DOI QR코드

DOI QR Code

Preventive effects of blackcurrant on glomerular fibrosis and renal dysfunction in a diabetic nephropathy model

당뇨병성 신병증 모델에서 블랙커런트의 사구체 섬유증 및 신장 기능장애 개선 효과

  • Kim, Hye Yoom (Department of Physiology, College of Oriental Medicine, Wonkwang University)
  • 김혜윰 (원광대학교 한의과대학 생리학교실)
  • Received : 2021.07.03
  • Accepted : 2021.08.30
  • Published : 2021.10.31

Abstract

Diabetic nephropathy is a major and representative complication of type 2 diabetes. Hyperglycemia increases the incidence of diabetic nephropathy, and induces kidney inflammation, thereby causing renal fibrosis, which is an important factor in the pathogenesis of diabetic nephropathy. This study investigated the effects of blackcurrant extract (BLC), which has been implicated in diabetic nephropathy in db/db mice, on glomerular fibrosis and renal dysfunction. The results showed that BLC consumption in type 2 diabetic db/db mice ameliorated diabetes-related metabolic disorders, such as insulin resistance and renal dysfunction, and significantly attenuated renal inflammation and renal fibrosis in diabetic nephropathy. In conclusion, these findings suggest that BLC consumption may help prevent renal fibrosis, inflammation, and consequent diabetic nephropathy.

본 연구를 통하여 블랙커런트 추출물의 섭취가 제 2형 당뇨동물 모델인 db/db 마우스에서 혈당 개선 및 사구체 확장, 신장 섬유증, 염증을 억제하여 당뇨병성 신병증을 개선했다는 것을 입증했다. 제 2형 당뇨병 db/db 마우스에서 블랙커런트 추출물의 섭취가 인슐린 저항성 및 신장 기능 장애와 같은 당뇨병 관련 대사 장애를 개선하고, 당뇨병성 신병증에 있어 신장 염증 및 신장 섬유증을 현저하게 약화시켰다는 것을 보여주었다. 결론적으로, 이러한 연구 결과는 블랙커런트 추출물이 신장 섬유증, 염증 및 이에 따른 당뇨병성 신병증의 예방에 중요한 역할을 할 수 있다는 증거를 제공한다. 따라서 당뇨병 관련 신기능 장애에 대한 블랙커런트 추출물의 보호 역할은 당뇨병성 신병증 개선 건강성 식품 개발에 대한 새로운 통찰력을 제공 할 수 있다.

Keywords

Acknowledgement

본 논문은 한국 연구 재단(NRF-2019R1I1A3A01062432)의 지원을 받았습니다.

References

  1. Ambrozewicz E, Augustyniak A, Gegotek A, Bielawska K, Skrzydlewska E. Black-currant protection against oxidative stress formation. J. Toxicol. Environ. Health A. 76: 1293-1306 (2013) https://doi.org/10.1080/15287394.2013.850762
  2. Bayrasheva VK, Pchelin IY, Dobronravov VA, Babenko AY, Chefu SG, Shatalov IS, Vasilkova VN, Hudiakova NV, Ivanova AN, Andoskin PA, Grineva EN. Short-term renal and metabolic effects of low dose vildagliptin treatment added-on insulin therapy in non-proteinuric patients with type 2 diabetes: open-label randomized prospective study. Arch. Endocrinol. Metab. 64(4): 418-426 (2020).
  3. Bishayee A, Mbimba T, Thoppil RJ, Haznagy-Radnai E, Sipos P, Darvesh AS, Folkesson HG, Hohmann J. Anthocyaninrich blackcurrant (Ribes nigrum L.) extract affords chemoprevention against diethylnitrosamine-induced hepatocellular carcinogenesis in rats, J. Nutr. Biochem, 22: 1035-1046 (2011) https://doi.org/10.1016/j.jnutbio.2010.09.001
  4. Bogdanov P, Corraliza L, Villena JA, Carvalho AR, Garcia-Arumi J, Ramos D, Ruberte J, Simo R, Hernandez C. The db/db Mouse: A Useful Model for the Study of Diabetic Retinal Neurodegeneration. PLoS One. 9: e97302 (2014) https://doi.org/10.1371/journal.pone.0097302
  5. Bongartz LG, Braam B, Verhaar MC, Cramer MJ, Goldschmeding R, Gaillard CA, Doevendans PA, Joles JA. Transient nitric oxide reduction induces permanent cardiac systolic dysfunction and worsens kidney damage in rats with chronic kidney disease. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298: R815-R823 (2010)
  6. Cohen MP, Lautenslager GT, Shearman CW. Increased collagen IV excretion in diabetes. A marker of compromised filtration function. Diabetes Care. 24: 914-918 (2001) https://doi.org/10.2337/diacare.24.5.914
  7. Cortez RE, Gonzalez de Mejia E. Blackcurrants(Ribes nigrum): A Review on Chemistry, Processing, and Health Benefits. J. Food Sci. 84(9): 2387-2401 (2019) https://doi.org/10.1111/1750-3841.14781
  8. Cove-Smith A, Hendry BM. The regulation of mesangial cell proliferation. Nephron Exp. Nephrol. 108: e74-e79 (2008) https://doi.org/10.1159/000127359
  9. Dabla PK. Renal function in diabetic nephropathy. World J Diabetes. 1: 48-56 (2010) https://doi.org/10.4239/wjd.v1.i2.48
  10. Decleves AE, Sharma K. New pharmacological treatments for improving renal outcomes in diabetes. Nat. Rev. Nephrol. 6: 371-380 (2010) https://doi.org/10.1038/nrneph.2010.57
  11. Deepa B, Venkatraman Anuradha C. Effects of linalool on inflammation,matrix accumulation and podocyte loss in kidney of streptozotocin-induced diabetic rats. Toxicol. Mech. Methods. 23: 223-234 (2013). https://doi.org/10.3109/15376516.2012.743638
  12. Dong FQ, Li H, Cai WM, Tao J, Li Q, Ruan Y, Zheng FP, Zhang Z. Effects of pioglitazone on expressions of matrix metalloproteinases 2 and 9 in kidneys of diabetic rats. Chin. Med. J. 117: 1040-1044 (2004)
  13. Ferreira NS, Bruder-Nascimento T, Pereira CA, Zanotto CZ, Prado DS, Silva JF, Rassi DM, Foss-Freitas MC, Alves-Filho JC, Carlos D, Tostes RC. NLRP3 inflammasome and mineralocorticoid receptors are associated with vascular dysfunction in type 2 diabetes mellitus. Cells. 8: 1595 (2019) https://doi.org/10.3390/cells8121595
  14. Gasparrini M, Forbes-Hernandez TY, Cianciosi D, Quiles JL, Mezzetti B, Xiao J, Giampieri F, Battino M. The efficacy of berries against lipopolysaccharide-induced inflammation: A review. Trends Food Sci. Tech. In press (2021)
  15. Gohda T, Mima A, Moon JY, Kanasaki K. Combat diabetic nephropathy: from pathogenesis to treatment. J. Diabetes Res. 2014: 207140 (2014)
  16. Gomes A., Godinho-Pereira J., Oudot C, Sequeira C.O., Macia A. Carvalho F, Motilva M.J, Pereira S.A, Matzapetakis M, Brenner C, Santos C.N. Berry fruits modulate kidney dysfunction and urine metabolome in Dahl salt-sensitive rats. Free Radic Biol Med. 154: 119-131 (2020) https://doi.org/10.1016/j.freeradbiomed.2020.05.002
  17. Grotendorst GR. Connective tissue growth factor: a mediator of TGF-beta action on fibroblasts. Cytokine Growth Factor Rev. 8: 171-179 (1997) https://doi.org/10.1016/S1359-6101(97)00010-5
  18. Huang JW, Chen KY, Tsai HB, Wu VC, Yang YF, Wu MS, Chu TS, Wu KD, SARS Research Group, Acute renal failure in patients with severe acute respiratory syndrome. J. Formos. Med. Assoc. 104: 891-896 (2005)
  19. Gomes A, Godinho-Pereira J, Oudot C, Sequeira CO, Macia A. Carvalho F, Motilva M.J, Pereira SA, Matzapetakis M, Brenner C, Santos CN. Berry fruits modulate kidney dysfunction and urine metabolome in Dahl salt-sensitive rats. Free Radic. Biol. Med. 154: 119-131 (2020) https://doi.org/10.1016/j.freeradbiomed.2020.05.002
  20. Kessler T, Jansen B, Hesse A. Effect of blackcurrant-, cranberry- and plum juice consumption on risk factors associated with kidney stone formation. Eur. J. Clin. Nutr. 56: 1020-1023 (2002) https://doi.org/10.1038/sj.ejcn.1601442
  21. Kolset SO, Reinholt FP, Jenssen T. Diabetic nephropathy and extracellular matrix. J. Histochem. Cytochem. 60: 976-986 (2012) https://doi.org/10.1369/0022155412465073
  22. Kretzschmar M, Doody J, Timokhina I, Massague J. A mechanism of repression of TGF/Smad signaling by oncogenic Ras. Genes Dev. 13: 804-816(1999) https://doi.org/10.1101/gad.13.7.804
  23. Lee DH. Dipeptidyl peptidase-4 inhibitor. Korean Med. 87: 1-8 (2014) https://doi.org/10.3904/kjm.2014.87.1.1
  24. Li J, Wang JJ, Kai Chen QY, Mahadev K, Zhang SX. Inhibition of reactive oxygen species by Lovastatin downregulates vascular endothelial growth factor expression and ameliorates blood-retinal barrier breakdown in db/db mice: role of NADPH oxidase 4. Diabetes. 59: 1528-1538 (2010) https://doi.org/10.2337/db09-1057
  25. Lin CL, Hsu YC, Lee PH, Lei CC, Wang JY, Huang YT, Wang SY, Wang FS. Cannabinoid receptor 1 disturbance of PPAR2 augments hyperglycemia induction of mesangial inflammation and fibrosis in renalglomeruli. J. Mol. Med. 92: 779-792 (2014) https://doi.org/10.1007/s00109-014-1125-6
  26. Miner JH. Type IV collagen and diabetic kidney disease. Nat. Rev. Nephrol. 16: 3-4 (2020) https://doi.org/10.1038/s41581-019-0229-1
  27. Munehiro K, Yoshio O, Daisuke K. Rodent models of diabetic nephropathy: their utility and limitations. Int. J. Nephrol. Renovasc. Dis. 9: 279-290 (2016) https://doi.org/10.2147/IJNRD.S103784
  28. Nagai K, Arai H, Yanagita M, Matsubara T, Kanamori H, Nakano T, Iehara N. Fukatsu A, Kita T, Doi T. Growth arrest-specific gene 6 is involved in glomerular hypertrophy in the early stage of diabeticnephropathy. J. Biol. Chem. 278: 18229-18234 (2003) https://doi.org/10.1074/jbc.M213266200
  29. Nair AR, Elks CM, Vila J, Piero FD, Paulsen DB, Francis J. A blueberry-enriched diet improves renal function and reduces oxidative stress in metabolic syndrome animals: Potential mechanism of TLR4-MAPK signaling pathway. PLoS One. 9: e111976 (2014) https://doi.org/10.1371/journal.pone.0111976
  30. Oyaert M, Speeckaert MM, Delanghe JR. Estimated urinary osmolality based on combined urinalysis parameters: a critical evaluation. Clin. Chem. Lab Med. 57: 1169-1176 (2019) https://doi.org/10.1515/cclm-2018-1307
  31. Park JH, Kho MC, Kim HY, Ahn YM, Lee YJ, Kang DG, Lee HS. Blackcurrant suppresses metabolic syndrome induced by high-fructose diet in rats. Evid. Based. Complement. Alternat. Med. 2015: 385976 (2015)
  32. Papageorgis P, Stylianopoulos T. Role of TGF in regulation of the tumor microenvironment and drugdelivery. Int. J. Oncol. 46: 933-943 (2015) https://doi.org/10.3892/ijo.2015.2816
  33. Penno G, Garofolo M, Del Prato S. Dipeptidyl peptidase-4 inhibition in chronic kidney disease and potential for protection against diabetes-related renal injury. Nutr. Metab. Cardiovasc. Dis. 26: 361-373 (2016) https://doi.org/10.1016/j.numecd.2016.01.001
  34. Qi C, Mao X, Zhang Z, Wu H. Classification and differential diagnosis of diabetic nephropathy. J. Diabetes Res. 2017: 8637138 (2017)
  35. Ram C, Jha AK, Ghosh A, Gairola S, Syed AM, Murty US, Naidu VGM, Sahu BD. Targeting NLRP3 inflammasome as a promising approach for treatment of diabetic nephropathy: Preclinical evidences with therapeutic approaches. Eur. J. Pharmacol. 885: 173503 (2020) https://doi.org/10.1016/j.ejphar.2020.173503
  36. Robinson R, Barathi VA, Chaurasia SS, Wong TY, Kern TS. Update on animal models of diabetic retinopathy: from molecular approaches to mice and higher mammals. Dis. Model Mech. 5: 444-456 (2012) https://doi.org/10.1242/dmm.009597
  37. Sharma K, Jin Y, Guo J, Ziyadeh FN. Neutralization of TGF-beta by anti-TGF-beta antibody attenuates kidney hypertrophy and the enhanced extracellular matrix gene expression in STZ-induced diabetic mice. Diabetes. 45: 522-530 (1996) https://doi.org/10.2337/diabetes.45.4.522
  38. Sharma K, McCue P, Dunn SR. Diabetic kidney disease in the db/db mouse. Am. J. Physiol. Renal Physiol. 284: F1138-F1144 (2003)
  39. Shin DB, Lee DW, Yang R, Kim JA, Antioxidative properties and flavonoids contents of matured Citrus peel extracts. Food Sci. Biotechnol. 15: 357-362 (2006)
  40. Sung SH, Ziyadeh FN, Wang A, Pyagay PE, Kanwar YS, Chen S. Blockade of vascular endothelial growth factor signaling ameliorates diabetic albuminuria in mice. J. Am. Soc. Nephrol. 17: 3093-3104 (2006) https://doi.org/10.1681/asn.2006010064
  41. Szymanski MK, de Boer RA, Navis GJ, van Gilst WH, Hillege HL. Animal models of cardiorenal syndrome: a review. Heart Fail Rev. 17: 411-20 (2012) https://doi.org/10.1007/s10741-011-9279-6
  42. Tesch GH, Lim AK. Recent insights into diabetic renal injury from the db/db mouse model of type 2 diabetic nephropathy. Am. J. Physiol. Renal Physiol. 300(2): F301-F310 (2011) https://doi.org/10.1152/ajprenal.00607.2010
  43. Thoppil RJ, Bhatia D, Barnes KF, Haznagy-Radnai E, Hohmann J, Darvesh AS, Bishayee A. Black currant anthocyanins abrogate oxidative stress through Nrf2-mediated antioxidant mechanisms in a rat model of hepatocellular carcinoma," Curr. Cancer Drug Targets. 12: 1244-1257 (2012)
  44. Tilg H, Hotamisligil GS. Nonalcoholic fatty liver disease: cytokine-adipokine interplay and regulation of insulin resistance. Gastroenterology. 131(3): 934-945 (2006) https://doi.org/10.1053/j.gastro.2006.05.054
  45. Trevisan R. The role of vildagliptin in the therapy of type 2 diabetic patients with renal dysfunction. Diabetes Ther. 8: 1215-1226 (2017) https://doi.org/10.1007/s13300-017-0302-3
  46. Twigg SM, Cooper ME. The time has come to target connective tissue growth factor in diabetic complications. Diabetologia. 47: 965-968 (2004)
  47. Twigg SM, Joly AH, Chen MM, Tsubaki J, Kim HS, Hwa V, Oh Y, Rosenfeld RG. Connective tissue growth factor/IGF-binding protein-related protein-2 is a mediator in the induction of fibronectin by advanced glycosylation end-products in human dermal fibroblasts. Endocrinology. 143: 1260-1269 (2002) https://doi.org/10.1210/en.143.4.1260
  48. Wang H, Guo X, Liu J, Li T, Fua X, Liu RH. Comparative suppression of NLRP3 inflammasome activation with LPS-induced inflammation by blueberry extracts (Vaccinium spp.). Chem. Soc. Rev. 7: 28931-28939 (2017)
  49. Wada J, Makino H. Inflammation and the pathogenesis of diabetic nephropathy. Clin. Sci(Lond). 124: 139-152 (2013) https://doi.org/10.1042/CS20120198
  50. Weekers L, Krzesinski JM. Diabetic nephropathy. Rev. Med. Liege. 60: 479-86(2005)
  51. Youhua L. Cellular and molecular mechanisms of renal fibrosis. Nat. Rev. Nephrol. 7: 684-696 (2011) https://doi.org/10.1038/nrneph.2011.149
  52. Yue Y, Meng K, Pu Y, Zhang X. Transforming growth factor beta (TGF-beta) mediates cardiac fibrosis and induces diabetic cardiomyopathy. Diabetes Res. Clin. Pract. 133: 124-130 (2017) https://doi.org/10.1016/j.diabres.2017.08.018
  53. Zhong L, Zhang W. Protective effect of berberine on renal fibrosis caused by diabetic nephropathy. Mol. Med. Rep. 16: 1055-1062 (2017) https://doi.org/10.3892/mmr.2017.6707