Acknowledgement
본 논문은 한국 연구 재단(NRF-2019R1I1A3A01062432)의 지원을 받았습니다.
References
- Ambrozewicz E, Augustyniak A, Gegotek A, Bielawska K, Skrzydlewska E. Black-currant protection against oxidative stress formation. J. Toxicol. Environ. Health A. 76: 1293-1306 (2013) https://doi.org/10.1080/15287394.2013.850762
- Bayrasheva VK, Pchelin IY, Dobronravov VA, Babenko AY, Chefu SG, Shatalov IS, Vasilkova VN, Hudiakova NV, Ivanova AN, Andoskin PA, Grineva EN. Short-term renal and metabolic effects of low dose vildagliptin treatment added-on insulin therapy in non-proteinuric patients with type 2 diabetes: open-label randomized prospective study. Arch. Endocrinol. Metab. 64(4): 418-426 (2020).
- Bishayee A, Mbimba T, Thoppil RJ, Haznagy-Radnai E, Sipos P, Darvesh AS, Folkesson HG, Hohmann J. Anthocyaninrich blackcurrant (Ribes nigrum L.) extract affords chemoprevention against diethylnitrosamine-induced hepatocellular carcinogenesis in rats, J. Nutr. Biochem, 22: 1035-1046 (2011) https://doi.org/10.1016/j.jnutbio.2010.09.001
- Bogdanov P, Corraliza L, Villena JA, Carvalho AR, Garcia-Arumi J, Ramos D, Ruberte J, Simo R, Hernandez C. The db/db Mouse: A Useful Model for the Study of Diabetic Retinal Neurodegeneration. PLoS One. 9: e97302 (2014) https://doi.org/10.1371/journal.pone.0097302
- Bongartz LG, Braam B, Verhaar MC, Cramer MJ, Goldschmeding R, Gaillard CA, Doevendans PA, Joles JA. Transient nitric oxide reduction induces permanent cardiac systolic dysfunction and worsens kidney damage in rats with chronic kidney disease. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298: R815-R823 (2010)
- Cohen MP, Lautenslager GT, Shearman CW. Increased collagen IV excretion in diabetes. A marker of compromised filtration function. Diabetes Care. 24: 914-918 (2001) https://doi.org/10.2337/diacare.24.5.914
- Cortez RE, Gonzalez de Mejia E. Blackcurrants(Ribes nigrum): A Review on Chemistry, Processing, and Health Benefits. J. Food Sci. 84(9): 2387-2401 (2019) https://doi.org/10.1111/1750-3841.14781
- Cove-Smith A, Hendry BM. The regulation of mesangial cell proliferation. Nephron Exp. Nephrol. 108: e74-e79 (2008) https://doi.org/10.1159/000127359
- Dabla PK. Renal function in diabetic nephropathy. World J Diabetes. 1: 48-56 (2010) https://doi.org/10.4239/wjd.v1.i2.48
- Decleves AE, Sharma K. New pharmacological treatments for improving renal outcomes in diabetes. Nat. Rev. Nephrol. 6: 371-380 (2010) https://doi.org/10.1038/nrneph.2010.57
- Deepa B, Venkatraman Anuradha C. Effects of linalool on inflammation,matrix accumulation and podocyte loss in kidney of streptozotocin-induced diabetic rats. Toxicol. Mech. Methods. 23: 223-234 (2013). https://doi.org/10.3109/15376516.2012.743638
- Dong FQ, Li H, Cai WM, Tao J, Li Q, Ruan Y, Zheng FP, Zhang Z. Effects of pioglitazone on expressions of matrix metalloproteinases 2 and 9 in kidneys of diabetic rats. Chin. Med. J. 117: 1040-1044 (2004)
- Ferreira NS, Bruder-Nascimento T, Pereira CA, Zanotto CZ, Prado DS, Silva JF, Rassi DM, Foss-Freitas MC, Alves-Filho JC, Carlos D, Tostes RC. NLRP3 inflammasome and mineralocorticoid receptors are associated with vascular dysfunction in type 2 diabetes mellitus. Cells. 8: 1595 (2019) https://doi.org/10.3390/cells8121595
- Gasparrini M, Forbes-Hernandez TY, Cianciosi D, Quiles JL, Mezzetti B, Xiao J, Giampieri F, Battino M. The efficacy of berries against lipopolysaccharide-induced inflammation: A review. Trends Food Sci. Tech. In press (2021)
- Gohda T, Mima A, Moon JY, Kanasaki K. Combat diabetic nephropathy: from pathogenesis to treatment. J. Diabetes Res. 2014: 207140 (2014)
- Gomes A., Godinho-Pereira J., Oudot C, Sequeira C.O., Macia A. Carvalho F, Motilva M.J, Pereira S.A, Matzapetakis M, Brenner C, Santos C.N. Berry fruits modulate kidney dysfunction and urine metabolome in Dahl salt-sensitive rats. Free Radic Biol Med. 154: 119-131 (2020) https://doi.org/10.1016/j.freeradbiomed.2020.05.002
- Grotendorst GR. Connective tissue growth factor: a mediator of TGF-beta action on fibroblasts. Cytokine Growth Factor Rev. 8: 171-179 (1997) https://doi.org/10.1016/S1359-6101(97)00010-5
- Huang JW, Chen KY, Tsai HB, Wu VC, Yang YF, Wu MS, Chu TS, Wu KD, SARS Research Group, Acute renal failure in patients with severe acute respiratory syndrome. J. Formos. Med. Assoc. 104: 891-896 (2005)
- Gomes A, Godinho-Pereira J, Oudot C, Sequeira CO, Macia A. Carvalho F, Motilva M.J, Pereira SA, Matzapetakis M, Brenner C, Santos CN. Berry fruits modulate kidney dysfunction and urine metabolome in Dahl salt-sensitive rats. Free Radic. Biol. Med. 154: 119-131 (2020) https://doi.org/10.1016/j.freeradbiomed.2020.05.002
- Kessler T, Jansen B, Hesse A. Effect of blackcurrant-, cranberry- and plum juice consumption on risk factors associated with kidney stone formation. Eur. J. Clin. Nutr. 56: 1020-1023 (2002) https://doi.org/10.1038/sj.ejcn.1601442
- Kolset SO, Reinholt FP, Jenssen T. Diabetic nephropathy and extracellular matrix. J. Histochem. Cytochem. 60: 976-986 (2012) https://doi.org/10.1369/0022155412465073
- Kretzschmar M, Doody J, Timokhina I, Massague J. A mechanism of repression of TGF/Smad signaling by oncogenic Ras. Genes Dev. 13: 804-816(1999) https://doi.org/10.1101/gad.13.7.804
- Lee DH. Dipeptidyl peptidase-4 inhibitor. Korean Med. 87: 1-8 (2014) https://doi.org/10.3904/kjm.2014.87.1.1
- Li J, Wang JJ, Kai Chen QY, Mahadev K, Zhang SX. Inhibition of reactive oxygen species by Lovastatin downregulates vascular endothelial growth factor expression and ameliorates blood-retinal barrier breakdown in db/db mice: role of NADPH oxidase 4. Diabetes. 59: 1528-1538 (2010) https://doi.org/10.2337/db09-1057
- Lin CL, Hsu YC, Lee PH, Lei CC, Wang JY, Huang YT, Wang SY, Wang FS. Cannabinoid receptor 1 disturbance of PPAR2 augments hyperglycemia induction of mesangial inflammation and fibrosis in renalglomeruli. J. Mol. Med. 92: 779-792 (2014) https://doi.org/10.1007/s00109-014-1125-6
- Miner JH. Type IV collagen and diabetic kidney disease. Nat. Rev. Nephrol. 16: 3-4 (2020) https://doi.org/10.1038/s41581-019-0229-1
- Munehiro K, Yoshio O, Daisuke K. Rodent models of diabetic nephropathy: their utility and limitations. Int. J. Nephrol. Renovasc. Dis. 9: 279-290 (2016) https://doi.org/10.2147/IJNRD.S103784
- Nagai K, Arai H, Yanagita M, Matsubara T, Kanamori H, Nakano T, Iehara N. Fukatsu A, Kita T, Doi T. Growth arrest-specific gene 6 is involved in glomerular hypertrophy in the early stage of diabeticnephropathy. J. Biol. Chem. 278: 18229-18234 (2003) https://doi.org/10.1074/jbc.M213266200
- Nair AR, Elks CM, Vila J, Piero FD, Paulsen DB, Francis J. A blueberry-enriched diet improves renal function and reduces oxidative stress in metabolic syndrome animals: Potential mechanism of TLR4-MAPK signaling pathway. PLoS One. 9: e111976 (2014) https://doi.org/10.1371/journal.pone.0111976
- Oyaert M, Speeckaert MM, Delanghe JR. Estimated urinary osmolality based on combined urinalysis parameters: a critical evaluation. Clin. Chem. Lab Med. 57: 1169-1176 (2019) https://doi.org/10.1515/cclm-2018-1307
- Park JH, Kho MC, Kim HY, Ahn YM, Lee YJ, Kang DG, Lee HS. Blackcurrant suppresses metabolic syndrome induced by high-fructose diet in rats. Evid. Based. Complement. Alternat. Med. 2015: 385976 (2015)
- Papageorgis P, Stylianopoulos T. Role of TGF in regulation of the tumor microenvironment and drugdelivery. Int. J. Oncol. 46: 933-943 (2015) https://doi.org/10.3892/ijo.2015.2816
- Penno G, Garofolo M, Del Prato S. Dipeptidyl peptidase-4 inhibition in chronic kidney disease and potential for protection against diabetes-related renal injury. Nutr. Metab. Cardiovasc. Dis. 26: 361-373 (2016) https://doi.org/10.1016/j.numecd.2016.01.001
- Qi C, Mao X, Zhang Z, Wu H. Classification and differential diagnosis of diabetic nephropathy. J. Diabetes Res. 2017: 8637138 (2017)
- Ram C, Jha AK, Ghosh A, Gairola S, Syed AM, Murty US, Naidu VGM, Sahu BD. Targeting NLRP3 inflammasome as a promising approach for treatment of diabetic nephropathy: Preclinical evidences with therapeutic approaches. Eur. J. Pharmacol. 885: 173503 (2020) https://doi.org/10.1016/j.ejphar.2020.173503
- Robinson R, Barathi VA, Chaurasia SS, Wong TY, Kern TS. Update on animal models of diabetic retinopathy: from molecular approaches to mice and higher mammals. Dis. Model Mech. 5: 444-456 (2012) https://doi.org/10.1242/dmm.009597
- Sharma K, Jin Y, Guo J, Ziyadeh FN. Neutralization of TGF-beta by anti-TGF-beta antibody attenuates kidney hypertrophy and the enhanced extracellular matrix gene expression in STZ-induced diabetic mice. Diabetes. 45: 522-530 (1996) https://doi.org/10.2337/diabetes.45.4.522
- Sharma K, McCue P, Dunn SR. Diabetic kidney disease in the db/db mouse. Am. J. Physiol. Renal Physiol. 284: F1138-F1144 (2003)
- Shin DB, Lee DW, Yang R, Kim JA, Antioxidative properties and flavonoids contents of matured Citrus peel extracts. Food Sci. Biotechnol. 15: 357-362 (2006)
- Sung SH, Ziyadeh FN, Wang A, Pyagay PE, Kanwar YS, Chen S. Blockade of vascular endothelial growth factor signaling ameliorates diabetic albuminuria in mice. J. Am. Soc. Nephrol. 17: 3093-3104 (2006) https://doi.org/10.1681/asn.2006010064
- Szymanski MK, de Boer RA, Navis GJ, van Gilst WH, Hillege HL. Animal models of cardiorenal syndrome: a review. Heart Fail Rev. 17: 411-20 (2012) https://doi.org/10.1007/s10741-011-9279-6
- Tesch GH, Lim AK. Recent insights into diabetic renal injury from the db/db mouse model of type 2 diabetic nephropathy. Am. J. Physiol. Renal Physiol. 300(2): F301-F310 (2011) https://doi.org/10.1152/ajprenal.00607.2010
- Thoppil RJ, Bhatia D, Barnes KF, Haznagy-Radnai E, Hohmann J, Darvesh AS, Bishayee A. Black currant anthocyanins abrogate oxidative stress through Nrf2-mediated antioxidant mechanisms in a rat model of hepatocellular carcinoma," Curr. Cancer Drug Targets. 12: 1244-1257 (2012)
- Tilg H, Hotamisligil GS. Nonalcoholic fatty liver disease: cytokine-adipokine interplay and regulation of insulin resistance. Gastroenterology. 131(3): 934-945 (2006) https://doi.org/10.1053/j.gastro.2006.05.054
- Trevisan R. The role of vildagliptin in the therapy of type 2 diabetic patients with renal dysfunction. Diabetes Ther. 8: 1215-1226 (2017) https://doi.org/10.1007/s13300-017-0302-3
- Twigg SM, Cooper ME. The time has come to target connective tissue growth factor in diabetic complications. Diabetologia. 47: 965-968 (2004)
- Twigg SM, Joly AH, Chen MM, Tsubaki J, Kim HS, Hwa V, Oh Y, Rosenfeld RG. Connective tissue growth factor/IGF-binding protein-related protein-2 is a mediator in the induction of fibronectin by advanced glycosylation end-products in human dermal fibroblasts. Endocrinology. 143: 1260-1269 (2002) https://doi.org/10.1210/en.143.4.1260
- Wang H, Guo X, Liu J, Li T, Fua X, Liu RH. Comparative suppression of NLRP3 inflammasome activation with LPS-induced inflammation by blueberry extracts (Vaccinium spp.). Chem. Soc. Rev. 7: 28931-28939 (2017)
- Wada J, Makino H. Inflammation and the pathogenesis of diabetic nephropathy. Clin. Sci(Lond). 124: 139-152 (2013) https://doi.org/10.1042/CS20120198
- Weekers L, Krzesinski JM. Diabetic nephropathy. Rev. Med. Liege. 60: 479-86(2005)
- Youhua L. Cellular and molecular mechanisms of renal fibrosis. Nat. Rev. Nephrol. 7: 684-696 (2011) https://doi.org/10.1038/nrneph.2011.149
- Yue Y, Meng K, Pu Y, Zhang X. Transforming growth factor beta (TGF-beta) mediates cardiac fibrosis and induces diabetic cardiomyopathy. Diabetes Res. Clin. Pract. 133: 124-130 (2017) https://doi.org/10.1016/j.diabres.2017.08.018
- Zhong L, Zhang W. Protective effect of berberine on renal fibrosis caused by diabetic nephropathy. Mol. Med. Rep. 16: 1055-1062 (2017) https://doi.org/10.3892/mmr.2017.6707