DOI QR코드

DOI QR Code

Physicochemical and sensory properties of non-alcoholic red wine produced using vacuum distillation

진공 증류 공정에 의해 제조된 무알코올 레드 와인의 이화학적 및 관능적 특성 분석

  • Kim, Ye-Na (Research Group of Food Processing, Korean Food Research Institute) ;
  • Kim, Sung-Soo (Research Group of Food Processing, Korean Food Research Institute) ;
  • Yu, Hwan Hee (Research Group of Traditional Food, Korea Food Research Institute) ;
  • Kim, Tae-Wan (Research Group of Traditional Food, Korea Food Research Institute)
  • 김예나 (한국식품연구원 가공공정연구단) ;
  • 김성수 (한국식품연구원 가공공정연구단) ;
  • 유환희 (한국식품연구원 전통식품연구단) ;
  • 김태완 (한국식품연구원 전통식품연구단)
  • Received : 2021.06.21
  • Accepted : 2021.10.01
  • Published : 2021.10.31

Abstract

In this study, the vacuum distillation process for producing non-alcoholic red wine was optimized via response surface methodology. As a result of optimizing the responses (alcohol content, yield) for independent variables (operating time, boiling point, and temperature difference), 1% alcohol content and 81.15% yield were obtained at an operating time of 24.5 min, boiling point of 65℃, and temperature difference of 8℃. To investigate the physicochemical and sensory properties, non-alcoholic wines with different boiling points (bp 25℃, bp 45℃, and bp 65℃) and a blended wine (4.2% of control wine added) were prepared. As the boiling point increased, the alcohol content decreased, and CI (color intensity) and Hue increased. Blended wine exhibited the highest value and bp 65℃ showed the lowest value in terms of sensory properties. In conclusion, distillation at a low boiling point and blending control wine could be used to prepare non-alcoholic wine with a high preference.

본 연구에서는 진공 증류 공정으로 무알코올 와인을 제조하는 과정에서 수율은 최대화하고 알코올만 선별적으로 제거하기 위해 반응표면분석법으로 공정을 최적화하였다. 이를 위해 증류 시간, 끓는점, 온도차를 독립변수로 설정하고 알코올 농도, 수율을 반응값으로 설정하였다. 그 결과, 증류 시간은 24.5분, 끓는점은 65℃, 온도차는 8℃ 일 때 알코올 농도를 1%까지 낮추면서 수율을 81.15%로 유지할 수 있었다. 끓는점에 따른 와인의 이화학적 및 관능적 특성 변화를 확인하기 위해 회귀분석 결과를 통해 도출된 반응표면모델을 활용하여 증류 시간 30분, 온도차 12±5℃, 끓는점 25-65℃의 조건에서 세 종류의 무알코올 와인을 제조하였다(끓는점 25℃, 끓는점 45℃, 끓는점 65℃). 또한, 기호도 향상을 위해 끓는점 25℃ 복원액에 원액 와인을 4.2% 첨가한 배합 와인을 제조하였다. 끓는점이 증가할수록 알코올 농도가 감소하고 CI와 Hue가 증가했지만, pH와 총산도는 영향을 받지 않았다. 관능검사에서는 색상, 향, 전체적인 기호도에서 배합 와인이 가장 높은 값을 나타냈고, 끓는점 65℃ 복원액이 가장 낮은 값을 나타냈다. 결과적으로 낮은 온도 및 끓는점에서 증류함으로써 관능 특성이 우수한 무알코올 와인을 제조할 수 있으며, 원액 와인의 배합으로 기호도를 더욱 향상시킬 수 있을 것으로 판단된다.

Keywords

Acknowledgement

이 논문은 한국연구재단 전통문화융합연구개발사업(2018M3C1B505214813)과 농림축산식품부 포도 수출연구사업단(617070-05) 사업의 지원을 받아 수행됨.

References

  1. Aguera E, Bes M, Roy A, Camarasa C, Sablayrolles JM. Partial removal of ethanol during fermentation to obtain reduced-alcohol wines. Am. J. Enol. Vitic. 61: 53-60 (2010) https://doi.org/10.5344/ajev.2010.61.1.53
  2. Artero A, Artero A, Tarin JJ, Cano A. The impact of moderate wine consumption on health. Maturitas. 80: 3-13 (2015) https://doi.org/10.1016/j.maturitas.2014.09.007
  3. Balda P, Martinez de Toda F. Decreasing the alcohol level and pH in wines by the "double harvest" technique. Cienc. Tec. Vitivinic. 28: 899-903 (2013)
  4. Belisario-Sanchez YY, Taboada-Rodriguez A, Marin-Iniesta F, Lopez-Gomez A. Dealcoholized wines by spinning cone column distillation: phenolic compounds and antioxidant activity measured by the 1,1-diphenyl-2-picrylhydrazyl method. J. Agric. Food Chem. 57: 6770-6778 (2009) https://doi.org/10.1021/jf900387g
  5. Caccetta RAA, Burke V, Mori TA, Beilin LJ, Puddey IB, Croft KD. Red wine polyphenols, in the absence of alcohol, reduce lipid peroxidative stress in smoking subjects. Free Radic. Biol. Med. 30: 636-642 (2001) https://doi.org/10.1016/S0891-5849(00)00497-4
  6. Chang EH, Jung SM, Park KS, Lim BS. Contents of phenolic compounds and trans-resveratrol in different parts of Korean new grape cutivars. Kor. J. Food Sci. Technol. 45: 708-713 (2013) https://doi.org/10.9721/KJFST.2013.45.6.708
  7. Chiva-Blanch G, Arranz S, Lamuela-Raventos RM, Estruch R. Effects of wine, alcohol and polyphenols on cardiovascular disease risk factors: evidences from human studies. Alcohol Alcohol. 48: 270-277 (2013) https://doi.org/10.1093/alcalc/agt007
  8. Czibulya Z, Horvath I, Kollar L, Nikfardjam MP, Kunsagi-Mate S. The effect of temperature, pH, and ionic strength on color stability of red wine. Tetrahedron. 71: 3027-3031 (2015) https://doi.org/10.1016/j.tet.2015.01.036
  9. Darias-Martiin J, Carrillo M, Diaz E, Boulton RB. Enhancement of red wine colour by pre-fermentation addition of copigments. Food Chem. 73: 217-220 (2001) https://doi.org/10.1016/S0308-8146(00)00286-7
  10. D'Auria M, Emanuele L, Racioppi R. The effect of heat and light on the composition of some volatile compounds in wine. Food Chem. 117: 9-14 (2009) https://doi.org/10.1016/j.foodchem.2009.03.070
  11. Diban N, Arruti A, Barcelo A, Puxeu M, Urtiaga A, Ortiz I. Membrane dealcoholization of different wine varieties reducing aroma losses: modeling and experimental validation. Innov. Food Sci. Emerg. Technol. 20: 259-268 (2013) https://doi.org/10.1016/j.ifset.2013.05.011
  12. Fang, F, Li JM, Pan QH, Huang WD. Determination of red wine flavonoids by HPLC and effect of aging. Food Chem. 101: 428-433 (2007) https://doi.org/10.1016/j.foodchem.2005.12.036
  13. Fornari T, Hernandez EJ, Ruiz-Rodriguez A, Senorans FJ, Reglero G. Phase equilibria for the removal of ethanol from alcoholic beverages using supercritical carbon dioxide. J. Supercrit. Fluids. 50: 91-96 (2009) https://doi.org/10.1016/j.supflu.2009.05.012
  14. Gaensly F, Agustini BC, da Silva GA, Picheth G, Bonfim TMB. Autochthonous yeasts with β-glucosidase activity increase resveratrol concentration during the alcoholic fermentation of Vitis labrusca grape must. J. Funct. Foods. 19: 288-295 (2015) https://doi.org/10.1016/j.jff.2015.09.041
  15. Gehm BD, McAndrews JM, Chien PY, Jameson JL. Resveratrol, a polyphenolic compound found in grapes and wine, is an agonist for the estrogen receptor. Proc. Natl. Acad. Sci. 94: 14138-14143 (1997) https://doi.org/10.1073/pnas.94.25.14138
  16. Gomez-Plaza E, Lopez-Nicolas JM, Lopez-Roca JM, Martinez-Cutillas A. Dealcoholization of wine behaviour of the aroma components during the process. LWT-Food. Sci. Technol. 32: 384-386 (1999) https://doi.org/10.1006/fstl.1999.0565
  17. Han F, Yang P, Wang H, Fernandes I, Mateus N, Liu Y. Digestion and absorption of red grape and wine anthocyanins through the gastrointestinal tract. Trends in Food Sci. Technol. 83: 211-224 (2019) https://doi.org/10.1016/j.tifs.2018.11.025
  18. Heymann H, LiCalzi M, Conversano MR, Bauer A, Skogerson K, Matthews M. Effects of extended grape ripening with or without must and wine alcohol manipulations on Cabernet Sauvignon wine sensory characteristics. S. Afr. J. Enol. Vitic. 34: 86-99 (2013)
  19. Hopfer H, Buffon PA, Ebeler SE, Heymann H. The combined effects of storage temperature and packaging on the sensory, chemical, and physical properties of a Cabernet Sauvignon wine. J. Agric. Food Chem. 61: 3320-3334 (2013) https://doi.org/10.1021/jf3051736
  20. Kim HJ, Hong HG, Kwon YO, Ha JO, Song YN, Son MJ. Analyses of functional components of grapes and grape products. Korean J. Food Preserv. 27: 872-879 (2020) https://doi.org/10.11002/kjfp.2020.27.7.872
  21. Korea Ministry of Government Legislation. LIQUOR TAX ACT. Available from: https://www.law.go.kr/LSW/lsInfoP.do?efYd=20210301&lsiSeq=224879#0000. Accessed Mar. 1, 2021.
  22. Liguori L, Russo P, Albanese D, Di Matteo M. Evolution of quality parameters during red wine dealcoholization by osmotic distillation. Food Chem. 140: 68-75 (2013) https://doi.org/10.1016/j.foodchem.2013.02.059
  23. Liguori L, Russo P, Albanese D, Di Matteo M. Production of low-alcohol beverages: current status and perspectives. pp. 347-382. In: Food Processing for Increased Quality and Consumption. Grumezescu AM, Holban AM (eds). Elsevier Inc., Amsterdam, The Netherlands (2018)
  24. Lisanti MT, Gambuti A, Genovese A, Piombino P, Moio L. Partial dealcoholization of red wines by membrane contactor technique: Effect on sensory characteristics and volatile composition. Food Bioproc. Technol. 6: 2289-2305 (2013) https://doi.org/10.1007/s11947-012-0942-2
  25. Park HJ, Choi W, Park JM, Jeong C, Kim S, Yoon H-S. Brewing and quality characteristics of new grape cultivar "Okrang" wine in fermentation process. J. Korean. Soc. Food. Sci. Nutr. 46: 622-629 (2017) https://doi.org/10.3746/JKFN.2017.46.5.622
  26. Priepke PE, Wei LS, Nelson AI, Steinberg MP. Suspension stability of Illinois soybean beverage. J. Food Sci. 45: 242-248 (1980) https://doi.org/10.1111/j.1365-2621.1980.tb02586.x
  27. Rehm J. The risks associated with alcohol use and alcoholism. Alcohol Res. Health. 34: 135 (2011)
  28. Ribereau-Gayon P, Glories Y, Maujean A, Dubourdieu D. The chemistry of wine stabilization and treatments. Vol. II, pp. 178-197. In: Handbook of Enology. John Wiley & Sons, New York, NY, USA. (2006)
  29. Rogerson F, Symington C. A method for the estimation of alcohol in fortified wines using hydrometer Baume and refractometer Brix. Am. J. Enol. Vitic. 57: 486-490 (2006) https://doi.org/10.5344/ajev.2006.57.4.486
  30. Romero C, Bakker J. Effect of storage temperature and pyruvate on kinetics of anthocyanin degradation, vitisin A derivative formation, and color characteristics of model solutions. J. Agric. Food Chem. 48: 2135-2141 (2000) https://doi.org/10.1021/jf990998l
  31. Schmidtke LM, Blackman JW, Agboola SO. Production technologies for reduced alcoholic wines. J. Food Sci. 71: 25-41 (2012)
  32. Stoleicova VS. Influence of dealcoholization process on stability of white and red wines against different hazes. Pomicultura, Viticultura si Vinificatia, 59: 31-33 (2015)
  33. Taran N, Stoleicova S, Soldatenco O, Morari B. The influence of pressure on chemical and physical parameters of white and red wines obtained by dealcoholization method. J. Agroaliment. Processes Technol. 20: 215-219 (2014)
  34. Taran N, Soldatenco E, Vasiucovici S, Soldatenco O. Influence of dealcoholization process temperature on the quality of white wine chardonnay. pp. 318-323. In: Modern Technologies in the Food Industry. October 20-22, Chisinau, Republic of Moldova. Tehnica-Info, Chisinau, Republic of Moldova. (2016)
  35. Tsang C, Higgins S, Duthie GG, Duthie SJ, Howie M, Mullen W, Lean MEJ, Crozier, A. The influence of moderate red wine consumption on antioxidant status and indices of oxidative stress associated with CHD in healthy volunteers. Br. J. Nutr. 93: 233-240 (2005) https://doi.org/10.1079/BJN20041311
  36. Varela C, Sengler F, Solomon M, Curtin C. Volatile flavour profile of reduced alcohol wines fermented with the non-conventional yeast species Metschnikowia pulcherrima and Saccharomyces uvarum. Food Chem. 209: 57-64 (2016) https://doi.org/10.1016/j.foodchem.2016.04.024
  37. Wang Z, Zou J, Cao K, Hsieh TC, Huang Y, Wu JM. Dealcoholized red wine containing known amounts of resveratrol suppresses atherosclerosis in hypercholesterolemic rabbits without affecting plasma lipid levels. Int. J. Mol. Med. 16: 533-540 (2005)
  38. Xia EQ, Deng GF, Guo YJ, Li HB. Biological activies of polyphenols from grapes. Int. J. Mol. Sci. 11: 622-646 (2010) https://doi.org/10.3390/ijms11020622
  39. Zoecklein BW, Hackney CH, Duncan SE, Marcy JE. Effect of fermentation, aging and thermal storage on total glycosides, phenol-free glycosides and volatile compounds of White Riesling (Vitis vinifera L.) wines. J. Ind. Microbiol. 22: 100-107 (1999)