Acknowledgement
This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (NRF-2018R1D1A1B07050063).
References
- Aryal, P., Kim, K., Park, P. H., Ham, S., Cho, J. and Song, K. (2014) Baicalein induces autophagic cell death through AMPK/ULK1 activation and downregulation of mTORC1 complex components in human cancer cells. FEBS J. 281, 4644-4658. https://doi.org/10.1111/febs.12969
- Assmann, V., Gillett, C. E., Poulsom, R., Ryder, K., Hart, I. R. and Hanby, A. M. (2001) The pattern of expression of the microtubule-binding protein RHAMM/IHABP in mammary carcinoma suggests a role in the invasive behaviour of tumour cells. J. Pathol. 195, 191-196. https://doi.org/10.1002/path.941
- Assmann, V., Jenkinson, D., Marshall, J. F. and Hart, I. R. (1999) The intracellular hyaluronan receptor RHAMM/IHABP interacts with microtubules and actin filaments. J. Cell Sci. 112, 3943-3954. https://doi.org/10.1242/jcs.112.22.3943
- Augustin, F., Fiegl, M., Schmid, T., Pomme, G., Sterlacci, W. and Tzankov, A. (2015) Receptor for hyaluronic acid-mediated motility (RHAMM, CD168) expression is prognostically important in both nodal negative and nodal positive large cell lung cancer. J. Clin. Pathol. 68, 368-373. https://doi.org/10.1136/jclinpath-2014-202819
- Benitez, A., Yates, T. J., Lopez, L. E., Cerwinka, W. H., Bakkar, A. and Lokeshwar, V. B. (2011) Targeting hyaluronidase for cancer therapy: antitumor activity of sulfated hyaluronic acid in prostate cancer cells. Cancer Res. 71, 4085-4095. https://doi.org/10.1158/0008-5472.CAN-10-4610
- Chang, K. H., Li, R., Papari-Zareei, M., Watumull, L., Zhao, Y. D., Auchus, R. J. and Sharifi, N. (2011) Dihydrotestosterone synthesis bypasses testosterone to drive castration-resistant prostate cancer. Proc. Natl. Acad. Sci. U.S.A. 108, 13728-13733. https://doi.org/10.1073/pnas.1107898108
- Chen, Y. and Zhou, X. (2020) Research progress of mTOR inhibitors. Eur. J. Med. Chem. 208, 112820. https://doi.org/10.1016/j.ejmech.2020.112820
- Fu, W. and Hall, M. N. (2020) Regulation of mTORC2 signaling. Genes 11, 1045. https://doi.org/10.3390/genes11091045
- Gust, K. M., Hofer, M. D., Perner, S. R., Kim, R., Chinnaiyan, A. M., Varambally, S., Moller, P., Rinnab, L., Rubin, M. A., Greiner, J., Schmitt, M., Kuefer, R. and Ringhoffer, M. (2009) RHAMM (CD168) is overexpressed at the protein level and may constitute an immunogenic antigen in advanced prostate cancer disease. Neoplasia 11, 956-963. https://doi.org/10.1593/neo.09694
- Hatano, H., Shigeishi, H., Kudo, Y., Higashikawa, K., Tobiume, K., Takata, T. and Kamata, N. (2011) RHAMM/ERK interaction induces proliferative activities of cementifying fibroma cells through a mechanism based on the CD44-EGFR. Lab. Invest. 91, 379-391. https://doi.org/10.1038/labinvest.2010.176
- Joukov, V., Groen, A. C., Prokhorova, T., Gerson, R., White, E., Rodriguez, A., Walter, J. C. and Livingston, D. M. (2006) The BRCA1/BARD1 heterodimer modulates ran-dependent mitotic spindle assembly. Cell 127, 539-552. https://doi.org/10.1016/j.cell.2006.08.053
- Kirby, M., Hirst, C. and Crawford, E. D. (2011) Characterising the castration-resistant prostate cancer population: a systematic review. Int. J. Clin. Pract. 65, 1180-1192. https://doi.org/10.1111/j.1742-1241.2011.02799.x
- Koelzer, V. H., Huber, B., Mele, V., Iezzi, G., Trippel, M., Karamitopoulou, E., Zlobec, I. and Lugli, A. (2015) Expression of the hyaluronanmediated motility receptor RHAMM in tumor budding cells identifies aggressive colorectal cancers. Hum. Pathol. 46, 1573-1581. https://doi.org/10.1016/j.humpath.2015.07.010
- Korkes, F., de Castro, M. G., de Cassio Zequi, S., Nardi, L., Del Giglio, A. and de Lima Pompeo, A. C. (2014) Hyaluronan-mediated motility receptor (RHAMM) immunohistochemical expression and androgen deprivation in normal peritumoral, hyperplasic and neoplastic prostate tissue. BJU Int. 113, 822-829. https://doi.org/10.1111/bju.12339
- Kouvidi, K., Berdiaki, A., Nikitovic, D., Katonis, P., Afratis, N., Hascall, V. C., Karamanos, N. K. and Tzanakakis, G. N. (2011) Role of receptor for hyaluronic acid-mediated motility (RHAMM) in low molecular weight hyaluronan (LMWHA)-mediated fibrosarcoma cell adhesion. J. Biol. Chem. 286, 38509-38520. https://doi.org/10.1074/jbc.M111.275875
- Lin, S. L., Chang, D., Chiang, A. and Ying, S. Y. (2008) Androgen receptor regulates CD168 expression and signaling in prostate cancer. Carcinogenesis 29, 282-290. https://doi.org/10.1093/carcin/bgm259
- Lin, S. L., Chang, D. and Ying, S. Y. (2007) Hyaluronan stimulates transformation of androgen-independent prostate cancer. Carcinogenesis 28, 310-320. https://doi.org/10.1093/carcin/bgl134
- Liu, Q., Wang, J., Kang, S. A., Thoreen, C. C., Hur, W., Ahmed, T., Sabatini, D. M. and Gray, N. S. (2011) Discovery of 9-(6-aminopyridin3-yl)-1-(3-(trifluoromethyl)phenyl)benzo[h][1,6]naphthyridin-2(1H)-one (Torin2) as a potent, selective, and orally available mammalian target of rapamycin (mTOR) inhibitor for treatment of cancer. J. Med. Chem. 54, 1473-1480. https://doi.org/10.1021/jm101520v
- Lokeshwar, V. B., Lopez, L. E., Munoz, D., Chi, A., Shirodkar, S. P., Lokeshwar, S. D., Escudero, D. O., Dhir, N. and Altman, N. (2010) Antitumor activity of hyaluronic acid synthesis inhibitor 4-methylumbelliferone in prostate cancer cells. Cancer Res. 70, 2613-2623. https://doi.org/10.1158/0008-5472.CAN-09-3185
- Maxwell, C. A., Benitez, J., Gomez-Baldo, L., Osorio, A., Bonifaci, N., Fernandez-Ramires, R., Costes, S. V., Guino, E., Chen, H., Evans, G. J., Mohan, P., Catala, I., Petit, A., Aguilar, H., Villanueva, A., Aytes, A., Serra-Musach, J., Rennert, G., Lejbkowicz, F., Peterlongo, P., Manoukian, S., Peissel, B., Ripamonti, C. B., Bonanni, B., Viel, A., Allavena, A., Bernard, L., Radice, P., Friedman, E., Kaufman, B., Laitman, Y., Dubrovsky, M., Milgrom, R., Jakubowska, A., Cybulski, C., Gorski, B., Jaworska, K., Durda, K., Sukiennicki, G., Lubinski, J., Shugart, Y. Y., Domchek, S. M., Letrero, R., Weber, B. L., Hogervorst, F. B., Rookus, M. A., Collee, J. M., Devilee, P., Ligtenberg, M. J., Luijt, R. B., Aalfs, C. M., Waisfisz, Q., Wijnen, J., Roozendaal, C. E., HEBON, EMBRACE, Easton, D. F., Peock, S., Cook, M., Oliver, C., Frost, D., Harrington, P., Evans, D. G., Lalloo, F., Eeles, R., Izatt, L., Chu, C., Eccles, D., Douglas, F., Brewer, C., Nevanlinna, H., Heikkinen, T., Couch, F. J., Lindor, N. M., Wang, X., Godwin, A. K., Caligo, M. A., Lombardi, G., Loman, N., Karlsson, P., Ehrencrona, H., von Wachenfeldt, A., SWE-BRCA, Barkardottir, R. B., Hamann, U., Rashid, M. U., Lasa, A., Caldes, T., Andres, R., Schmitt, M., Assmann, V., Stevens, K., Offit, K., Curado, J., Tilgner, H., Guigo, R., Aiza, G., Brunet, J., Castellsague, J., Martrat, G., Urruticoechea, A., Blanco, I., Tihomirova, L., Goldgar, D. E., Buys, S., John, E. M., Miron, A., Southey, M., Daly, M. B., BCFR, Schmutzler, R. K., Wappenschmidt, B., Meindl, A., Arnold, N., Deissler, H., Varon-Mateeva, R., Sutter, C., Niederacher, D., Imyamitov, E., Sinilnikova, O. M., Stoppa-Lyonne, D., Mazoyer, S., Verny-Pierre, C., Castera, L., de Pauw, A., Bignon, Y. J., Uhrhammer, N., Peyrat, J. P., Vennin, P., Fert Ferrer, S., Collonge-Rame, M. A., Mortemousque, I., GEMO Study Collaborators, Spurdle, A. B., Beesley, J., Chen, X., Healey, S., kConFab, Barcellos-Hoff, M. H., Vidal, M., Gruber, S. B., Lazaro, C., Capella, G., McGuffog, L., Nathanson, K. L., Antoniou, A. C., Chenevix-Trench, G., Fleisch, M. C., Moreno, V. and Pujana, M. A. (2011) Interplay between BRCA1 and RHAMM regulates epithelial apicobasal polarization and may influence risk of breast cancer. PLoS Biol. 9, e1001199. https://doi.org/10.1371/journal.pbio.1001199
- Maxwell, C. A., Keats, J. J., Crainie, M., Sun, X., Yen, T., Shibuya, E., Hendzel, M., Chan, G. and Pilarski, L. M. (2003) RHAMM is a centrosomal protein that interacts with dynein and maintains spindle pole stability. Mol. Biol.Cell 14, 2262-2276. https://doi.org/10.1091/mbc.e02-07-0377
- Maxwell, C. A., McCarthy, J. and Turley, E. (2008) Cell-surface and mitotic-spindle RHAMM: moonlighting or dual oncogenic functions? J. Cell Sci. 121, 925-932. https://doi.org/10.1242/jcs.022038
- Meier, C., Spitschak, A., Abshagen, K., Gupta, S., Mor, J. M., Wolkenhauer, O., Haier, J., Vollmar, B., Alla, V. and Putzer, B. M. (2014) Association of RHAMM with E2F1 promotes tumour cell extravasation by transcriptional up-regulation of fibronectin. J. Pathol. 234, 351-364. https://doi.org/10.1002/path.4400
- Poser, S., Impey, S., Trinh, K., Xia, Z. and Storm, D. R. (2000) SRF-dependent gene expression is required for PI3-kinase-regulated cell proliferation. EMBO J. 19, 4955-4966. https://doi.org/10.1093/emboj/19.18.4955
- Pujana, M. A., Han, J. D., Starita, L. M., Stevens, K. N., Tewari, M., Ahn, J. S., Rennert, G., Moreno, V., Kirchhoff, T., Gold, B., Assmann, V., Elshamy, W. M., Rual, J. F., Levine, D., Rozek, L. S., Gelman, R. S., Gunsalus, K. C., Greenberg, R. A., Sobhian, B., Bertin, N., Venkatesan, K., Ayivi-Guedehoussou, N., Sole, X., Hernandez, P., Lazaro, C., Nathanson, K. L., Weber, B. L., Cusick, M. E., Hill, D. E., Offit, K., Livingston, D. M., Gruber, S. B., Parvin, J. D. and Vidal, M. (2007) Network modeling links breast cancer susceptibility and centrosome dysfunction. Nat. Genet. 39, 1338-1349. https://doi.org/10.1038/ng.2007.2
- Rahman, M., Miyamoto, H. and Chang, C. (2004) Androgen receptor coregulators in prostate cancer: mechanisms and clinical implications. Clin. Cancer Res. 10, 2208-2219. https://doi.org/10.1158/1078-0432.CCR-0746-3
- Rizzardi, A. E., Vogel, R. I., Koopmeiners, J. S., Forster, C. L., Marston, L. O., Rosener, N. K., Akentieva, N., Price, M. A., Metzger, G. J., Warlick, C. A., Henriksen, J. C., Turley, E. A., McCarthy, J. B. and Schmechel, S. C. (2014) Elevated hyaluronan and hyaluronan-mediated motility receptor are associated with biochemical failure in patients with intermediate-grade prostate tumors. Cancer 120, 1800-1809. https://doi.org/10.1002/cncr.28646
- Saxton, R. A. and Sabatini, D. M. (2017a) mTOR signaling in growth, metabolism, and disease. Cell 168, 960-976. https://doi.org/10.1016/j.cell.2017.02.004
- Saxton, R. A. and Sabatini, D. M. (2017b) mTOR signaling in growth, metabolism, and disease. Cell 169, 361-371 [Erratum]. https://doi.org/10.1016/j.cell.2017.03.035
- Sohr, S. and Engeland, K. (2008) RHAMM is differentially expressed in the cell cycle and downregulated by the tumor suppressor p53. Cell Cycle 7, 3448-3460. https://doi.org/10.4161/cc.7.21.7014
- Song, J. M., Im, J., Nho, R. S., Han, Y. H., Upadhyaya, P. and Kassie, F. (2019) Hyaluronan-CD44/RHAMM interaction-dependent cell proliferation and survival in lung cancer cells. Mol. Carcinog. 58, 321-333. https://doi.org/10.1002/mc.22930
- Sun, Y., Jiang, M., Park, P. H. and Song, K. (2020) Transcriptional suppression of androgen receptor by 18beta-glycyrrhetinic acid in LN-CaP human prostate cancer cells. Arch. Pharm. Res. 43, 433-448. https://doi.org/10.1007/s12272-020-01228-z
- Tafur, L., Kefauver, J. and Loewith, R. (2020) Structural insights into TOR signaling. Genes 11, 885. https://doi.org/10.3390/genes11080885
- Taplin, M. E. and Balk, S. P. (2004) Androgen receptor: a key molecule in the progression of prostate cancer to hormone independence. J. Cell. Biochem. 91, 483-490. https://doi.org/10.1002/jcb.10653
- Thangavel, C., Boopathi, E., Liu, Y., Haber, A., Ertel, A., Bhardwaj, A., Addya, S., Williams, N., Ciment, S. J., Cotzia, P., Dean, J. L., Snook, A., McNair, C., Price, M., Hernandez, J. R., Zhao, S. G., Birbe, R., McCarthy, J. B., Turley, E. A., Pienta, K. J., Feng, F. Y., Dicker, A. P., Knudsen, K. E. and Den, R. B. (2017) RB loss promotes prostate cancer metastasis. Cancer Res. 77, 982-995. https://doi.org/10.1158/0008-5472.CAN-16-1589
- Turley, E. A., Noble, P. W. and Bourguignon, L. Y. (2002) Signaling properties of hyaluronan receptors. J. Biol. Chem. 277, 4589-4592. https://doi.org/10.1074/jbc.R100038200
- Wang, F., Meng, M., Mo, B., Yang, Y., Ji, Y., Huang, P., Lai, W., Pan, X., You, T., Luo, H., Guan, X., Deng, Y., Yuan, S., Chu, J., Namaka, M., Hughes, T., Ye, L., Yu, J., Li, X. and Deng, Y. (2018) Crosstalks between mTORC1 and mTORC2 variagate cytokine signaling to control NK maturation and effector function. Nat. Commun. 9, 4874. https://doi.org/10.1038/s41467-018-07277-9
- Wang, K. and Zhang, T. (2016) Prognostic significance of CD168 overexpression in colorectal cancer. Oncol. Lett. 12, 2555-2559. https://doi.org/10.3892/ol.2016.4974
- Wang, Z., Wu, Y., Wang, H., Zhang, Y., Mei, L., Fang, X., Zhang, X., Zhang, F., Chen, H., Liu, Y., Jiang, Y., Sun, S., Zheng, Y., Li, N. and Huang, L. (2014) Interplay of mevalonate and Hippo pathways regulates RHAMM transcription via YAP to modulate breast cancer cell motility. Proc. Natl. Acad. Sci. U.S.A. 111, E89-E98.
- Watson, P. A., Arora, V. K. and Sawyers, C. L. (2015) Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat. Rev. Cancer 15, 701-711. https://doi.org/10.1038/nrc4016
- Xu, Y., Chen, S. Y., Ross, K. N. and Balk, S. P. (2006) Androgens induce prostate cancer cell proliferation through mammalian target of rapamycin activation and post-transcriptional increases in cyclin D proteins. Cancer Res. 66, 7783-7792. https://doi.org/10.1158/0008-5472.CAN-05-4472
- Zhang, H., Berel, D., Wang, Y., Li, P., Bhowmick, N. A., Figlin, R. A. and Kim, H. L. (2013) A comparison of Ku0063794, a dual mTORC1 and mTORC2 inhibitor, and temsirolimus in preclinical renal cell carcinoma models. PLoS ONE 8, e54918. https://doi.org/10.1371/journal.pone.0054918
- Zhang, J., Wu, D., He, Y., Li, L., Lu, J. Z., Gui, H., Wang, Y., Tao, Y., Wang, H.Z., Kaushik, D., Rodriguez, R. and Wang, Z. (2020) Rapamycin inhibits AR signaling pathway in prostate cancer by interacting with the FK1 domain of FKBP51. Biochem. Biophys. Rep. 23, 100778.
- Zlobec, I., Baker, K., Terracciano, L. M. and Lugli, A. (2008) RHAMM, p21 combined phenotype identifies microsatellite instability-high colorectal cancers with a highly adverse prognosis. Clin. Cancer Res. 14, 3798-3806. https://doi.org/10.1158/1078-0432.CCR-07-5103
Cited by
- HMMR is a downstream target of FOXM1 in enhancing proliferation and partial epithelial-to-mesenchymal transition of bladder cancer cells vol.408, pp.2, 2021, https://doi.org/10.1016/j.yexcr.2021.112860