DOI QR코드

DOI QR Code

Vehicle Localization Method for Lateral Position within Lane Based on Vision and HD Map

비전 및 HD Map 기반 차로 내 차량 정밀측위 기법

  • Woo, Rinara (Center for Embedded Software Technology, Univ. of Kyungpook National) ;
  • Seo, Dae-Wha (School of Electronics Engineering, Univ. of Kyungpook National)
  • 우리나라 (경북대학교 임베디드 소프트웨어 연구센터) ;
  • 서대화 (경북대학교 전자공학부)
  • Received : 2021.04.28
  • Accepted : 2021.10.14
  • Published : 2021.10.31

Abstract

As autonomous driving technology advances, the accuracy of the vehicle position is important for recognizing the environments around driving. Map-matching localization techniques based on high definition (HD) maps have been studied to improve localization accuracy. Because conventional map-matching techniques estimate the vehicle position based on an HD map reference dataset representing the center of the lane, the estimated position does not reflect the deviation of the lateral distance within the lane. Therefore, this paper proposes a localization system based on the reference lateral position dataset extracted using image processing and HD maps. Image processing extracts the driving lane number using inverse perspective mapping, multi-lane detection, and yellow central lane detection. The lane departure method estimates the lateral distance within the lane. To collect the lateral position reference dataset, this approach involves two processes: (i) the link and lane node is extracted based on the lane number obtained from image processing and position from GNSS/INS, and (ii) the lateral position is matched with the extracted link and lane node. Finally, the vehicle position is estimated by matching the GNSS/INS local trajectory and the reference lateral position dataset. The performance of the proposed method was evaluated by experiments carried out on a highway environment. It was confirmed that the proposed method improves accuracy by about 1.0m compared to GNSS / INS, and improves accuracy by about 0.04m~0.21m (7~30%) for each section when compared with the existing lane-level map matching method.

자율 주행 기술이 발전함에 따라 주행 주변 환경을 인식하는 데 차량 위치의 정확성은 매우 중요하다. 측위의 정확도를 높이기 위해 정밀지도를 사용한 지도 정합 측위기술(map-matching localization)이 연구되고 있다. 기존의 지도 정합 기법은 지도에서 차선의 중심으로 표현된 데이터를 기반으로 차량 위치를 추정하기에 차선 내 측면 거리의 편차를 반영하지 않는다. 따라서 본 논문에서는 정밀한 측위를 제공하기 위해 영상처리를 통한 차선 검출 기법과 정밀지도의 차선 위치 정보를 이용한 기법을 제안한다. 영상 처리 기법으로 IPM(inverse perspective mapping)과 다중 차선 검출 기법, 중앙선 검출 기법을 통하여 차선 번호를 검출하고 차선 이탈 감지 방법으로 차선 중심으로부터 차량의 측면 거리를 추정한다. 최종적으로 영상처리로 검출한 차선 번호와 GNSS / INS의 위치를 기반으로 정밀지도에서 위치 링크정보를 추출하고 추출된 링크에 측면 거리를 반영하여 차선 내 차량의 위치를 추정한다. 제안된 방법의 성능을 평가하기 위하여 실제 도로에서 실험하였다. 제안하는 방법은 GNSS / INS와 비교 시 약 1.0m 정도 정확도가 개선되며, 기존의 차선레벨 맵매칭 방법과 비교 시 구간별로 약 0.04m ~ 0.21m(7~30%) 정확도가 개선됨을 확인하였다.

Keywords

References

  1. Aly M.(2008), "Real time detection of lane markers in urban streets," 2008 IEEE Intelligent Vehicles Symposium.
  2. Badino H., Huber D. and Kanade T.(2011), "Visual topometric localization," In 2011 IEEE Intelligent Vehicles Symposium (IV), pp.794-799.
  3. Bernstein D. and Kornhauser A.(1998), An introduction to map matching forpersonal navigation assistants, New Jersey TIDE Center, pp.1-14.
  4. Cai H., Hu Z., Huang G., Zhu D. and Su X.(2018), "Integration of gps, monocular vision and high definition(hd) map for accurate vehicle localization," Sensors, vol. 18, no. 10. https://doi.org/10.3390/s18103415
  5. Cui D., Xue J. and Zheng N.(2016), "Real-time global localization of robotic cars in lane level via lane marking detection and shape registration," IEEE Transactions on Intelligent Transportation Systems, vol. 17, no. 4, pp.1039-1050. https://doi.org/10.1109/TITS.2015.2492019
  6. Deng L., Yang M., Hu B., Li T., Li H. and Wang C.(2019), "Semantic segmentation-based lane-level localization using around view monitoring system," IEEE Sensors Journal, vol. 19, no. 21, pp.10077-10086. https://doi.org/10.1109/jsen.2019.2929135
  7. Du X. and Tan K. K.(2016), "Comprehensive and practical vision system for self-driving vehicle lane-level localization," IEEE Transactions on Image Processing, vol. 25, no. 5, pp.2075-2088. https://doi.org/10.1109/TIP.2016.2539683
  8. Durrant-Whyte H. and Bailey T.(2006), "Simultaneous localization and mapping: Part i," IEEE Robotics Automation Magazine, vol. 13, no. 2, pp.99-110. https://doi.org/10.1109/MRA.2006.1638022
  9. Forsyth D. and Ponce J.(2003), Computer vision: A modern approach, Prentice Hall.
  10. Grompone von Gioi R., Jakubowicz J., Morel J. and Randall G.(2010), "Lsd: A fast line segment detector with a false detection control," IEEE Trans-actions on Pattern Analysis and Machine Intelligence, vol. 32, no. 4, pp.722-732. https://doi.org/10.1109/TPAMI.2008.300
  11. Hashemiand M. and Karimi H. A.(2014), "A critical review of real-time map-matching algorithms: Current issues and future directions," Computers, Environment and Urban Systems, vol. 48, pp.153-165. https://doi.org/10.1016/j.compenvurbsys.2014.07.009
  12. Hsueh Y. L. and Chen H. C.(2018), "Map matching for low-sampling-rategps trajectories by exploring real-time moving directions," Information Sciences, vol. 433-434, pp.55-69. https://doi.org/10.1016/j.ins.2017.12.031
  13. Jeong M., Yoon T., Kim E. and Park J.(2020), "Lane-level map-matching method for vehicle localization using gps and camera on a high-definition map," Sensors, vol. 20, no. 8.
  14. Jo K., Jo Y., Suhr J. K., Jung H. G. and Sunwoo M.(2015), "Precise localization of an autonomous car based on probabilistic noise models of road surface marker features using multiple cameras," IEEE Transactions on Intelligent Transportation Systems, vol. 16, no. 6, pp.3377-3392. https://doi.org/10.1109/TITS.2015.2450738
  15. Kang J. M., Kim H. S., Park J. B. and Choi Y. H.(2018), "An enhanced map-matching algorithm for real-time position accuracy improvement with a low-cost GPS receiver," Sensors, vol. 18, no. 11, p.3836. https://doi.org/10.3390/s18113836
  16. Kim D., Kim B., Chung T. and Yi K.(2017), "Lane-level localization using an avm camera for an automated driving vehicle in urban environments," IEEE/ASME Transactions on Mechatronics, vol. 22, no. 1, pp.280-290. https://doi.org/10.1109/TMECH.2016.2533635
  17. Kim S., Woo R., Yang E. and Seo D.(2019), "Real time multi-lane detection using relevant lines based on line labeling method," In 2019 4th International Conference on Intelligent Transportation Engineering (ICITE), pp.301-305.
  18. Mattern N., Schubert R. and Wanielik G.(2010), "High-accurate vehicle localization using digital maps and coherency images," In 2010 IEEE Intelligent Vehicles Symposium, pp.462-469.
  19. Ochieng W., Quddus M. and Noland R.(2003), "Map-matching in complex urban road networks," Revista Brasileira de Cartografia, vol. 55, no. 2.
  20. Parra I., Sotelo M. A., Llorca D. F. and Ocana M.(2010), "Robust visual odometry for vehicle localization in urban environments," Robotica, vol. 28, no. 3, pp.441-452. https://doi.org/10.1017/s026357470900575x
  21. Quddus M. A., Noland R. B. and Ochieng W. Y.(2006), "A high accuracy fuzzy logic based map matching algorithm for road transport," Journal of Intelligent Transportation Systems, vol. 10, no. 3, pp.103-115. https://doi.org/10.1080/15472450600793560
  22. Tanaka S., Yamada K., Ito T. and Ohkawa T.(2011), "Vehicle detection based on perspective transformation using rear-view camera," International Journal of Vehicular Technology, vol. 2011, pp.1-9.
  23. Valiente D., Gil A., Paya L., Sebastian J. M. and Reinoso O.(2017), "Robust visual localization with dynamic uncertainty management in omnidirectional slam," Appl. Sci., vol. 7, p.1294. https://doi.org/10.3390/app7121294
  24. Woo R., Yang E. J. and Seo D. W.(2019), "A fuzzy-innovation-based adaptive kalman filter for enhanced vehicle positioning in dense urban environments," Sensors, vol. 19, no. 5, p.1142. https://doi.org/10.3390/s19051142
  25. Xing Y., Lv C. and Cao D.(2020), Advanced driver intention inference: Theory and design, Elsevier Science.
  26. Yang G., Chen Z., Li Y. and Su Z.(2019), "Rapid relocation method for mobile robot based on improved orb-slam2 algorithm," Remote Sens, vol. 11, p.149. https://doi.org/10.3390/rs11020149
  27. Zhang F., Rui T., Yang C. and Shi J.(2019), "Lap-slam: A line-assisted point-based monocular vslam," Electronics, vol. 8, p.243. https://doi.org/10.3390/electronics8020243
  28. Zhou Q., Zhang H., Li Y. and Li Z.(2015), "An adaptive low-cost GNSS/MEMS-IMU tightly-coupled integration system with aiding measurement in agnss signal-challenged environment," Sensors, vol. 15, pp.23953-23982. https://doi.org/10.3390/s150923953