DOI QR코드

DOI QR Code

Uncertainty analyses of spent nuclear fuel decay heat calculations using SCALE modules

  • Shama, Ahmed (Laboratory of Reactor Physics and Systems Behaviour (LRS), Ecole Polytechnique Federale de Lausanne (EPFL)) ;
  • Rochman, Dimitri (Laboratory for Reactor Physics and Thermal-Hydraulics (LRT), Paul Scherrer Institute (PSI)) ;
  • Pudollek, Susanne (National Cooperative for the Disposal of Radioactive Waste (Nagra)) ;
  • Caruso, Stefano (Kernkraftwerk Gosgen-Daniken AG) ;
  • Pautz, Andreas (Laboratory of Reactor Physics and Systems Behaviour (LRS), Ecole Polytechnique Federale de Lausanne (EPFL))
  • 투고 : 2020.09.20
  • 심사 : 2021.03.11
  • 발행 : 2021.09.25

초록

Decay heat residuals of spent nuclear fuel (SNF), i.e., the differences between calculations and measurements, were obtained previously for various spent fuel assemblies (SFA) using the Polaris module of the SCALE code system. In this paper, we compare decay heat residuals to their uncertainties, focusing on four PWRs and four BWRs. Uncertainties in nuclear data and model inputs are propagated stochastically through calculations using the SCALE/Sampler super-sequence. Total uncertainties could not explain the residuals of two SFAs measured at GE-Morris. The combined z-scores for all SFAs measured at the Clab facility could explain the resulting deviations. Nuclear-data-related uncertainties contribute more in the high burnup SFAs. Design and operational uncertainties tend to contribute more to the total uncertainties. Assembly burnup is a relevant variable as it correlates significantly with the SNF decay heat. Additionally, burnup uncertainty is a major contributor to decay heat uncertainty, and assumptions relating to these uncertainties are crucial. Propagation of nuclear data and design and operational uncertainties shows that the analyzed assemblies respond similarly with high correlation. The calculated decay heats are highly correlated in the PWRs and BWRs, whereas lower correlations were observed between decay heats of SFAs that differ in their burnups.

키워드

과제정보

This study is part of an ongoing PhD project titled "Uncertainty quantification of spent nuclear fuel nuclide inventory" that is funded by the Swiss National Cooperative for the Disposal of Radioactive Waste (Nagra). This study was also partly funded by the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement No. 847593.

참고문헌

  1. A. Shama, D. Rochman, S. Caruso, A. Pautz, Validation of spent nuclear fuel decay heat calculations using Polaris, TRITON/ORIGEN-ARP, and CASMO5, Ann. Nucl. Energy (2021). Submitted for publication.
  2. Nagra, The Nagra Research, Development and Demonstration (RD&D) Plan for the Disposal of Radioactive Waste in Switzerland, 2016. Technical Report 16-02, Switzerland, https://www.nagra.ch/display.cfm/id/102495/disp_type/display/filename/e_ntb16-02.pdf.
  3. ENSI, Specific Design Principles for Deep Geological Repositories and Requirements for the Safety Case, Guideline ENSI-G03, ENSI, Switzerland, 2009. www.ensi.ch/en/wp-content/uploads/sites/5/2011/08/g-003_e.pdf.
  4. & SKB. Posiva, Safety Functions, Performance Targets and Technical Design Requirements for a KBS-3V Repository - Conclusions and Recommendations from a Joint SKB and Posiva Working Group, Posiva SKB Report 01, ISSN 2489-2742, Posiva, Finland; SKB, Sweden, 2017. https://www.skb.se/publikation/2485568/Posiva+SKB+Report+01.pdf.
  5. I.C. Gauld, G. Illas, B.D. Murphy, C.F. Weber, Validation of SCALE 5 Decay Heat Predictions for LWR Spent Nuclear Fuel, NUREG/CR-6972, ORNL/TM-2008/015, ORNL (Oak Ridge National Laboratory), Oak Ridge, Tennesse, USA, 2010.
  6. G. Ilas, I.C. Gauld, H. Liljenfeldt, Validation of ORIGEN for LWR used fuel decay heat analysis with SCALE, Nucl. Eng. Des. 273 (2014) 58-67, https://doi.org/10.1016/j.nucengdes.2014.02.026.
  7. G. Ilas, I.C. Gauld, SCALE analysis of CLAB decay heat measurements for LWR spent fuel assemblies, Ann. Nucl. Energy 35 (2008) 37-48, https://doi.org/10.1016/j.anucene.2007.05.017.
  8. J.-C. Sublet, JEFF-3.1, ENDF/B-VII and JENDL-3.3 critical assemblies benchmarking with the Monte Carlo code TRIPOLI, IEEE Trans. Nucl. Sci. 55 (2008) 604-613, https://doi.org/10.1109/TNS.2007.911600.
  9. L. San Felice, R. Eschbach, R. Dewi Syarifah, S.-E. Maryam, K. Hesketh, MOx Depletion Calculation Benchmark, Organisation for Economic Co-Operation and Development, 2016. http://inis.iaea.org/Search/search.aspx?orig_q=RN:49042360. (Accessed 20 August 2020).
  10. B. Roque, R. Gregg, R. Kilger, F. Laugier, P. Marimbeau, A. Ranta-Aho, C. Riffard, K. Suyama, J.F. Thro, M. Yudkevich, K. Hesketh, E. Sartori, International comparison of a depletion calculation benchmark devoted to fuel cycle issues results from the phase 1 dedicated to PWR-UOx fuels. http://inis.iaea.org/Search/search.aspx?orig_q=RN:43130067, 2006. (Accessed 19 August 2020).
  11. Burn-up credit criticality benchmark: phase IV-A: reactivity prediction calculations for infinite arrays of PWR MOX fuel pin cells, (n.d.). https://www.oecd-ilibrary.org/nuclear-energy/burn-up-credit-criticality-benchmark_9789264103498-en. (Accessed 19 August 2020).
  12. I. Gauld, U. Mertyurek, Margins for Uncertainty in the Predicted Spent Fuel Isotopic Inventories for BWR Burnup Credit, NUREG/CR-7251, U.S. NRC, ORNL (Oak Ridge National Laboratory), 2018.
  13. G. Radulescu, I.C. Gauld, G. Ilas, J.C. Wagner, Approach for validating actinide and fission product compositions for burnup credit criticality safety analyses, Nucl. Technol. 188 (2014) 154-171, https://doi.org/10.13182/NT13-154.
  14. B.T. Bearden, M.A. Jessee, SCALE Code System, ORNL/TM-2005/39, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA, 2018.
  15. SKB, Measurements of Decay Heat in Spent Nuclear Fuel at the Swedish Interim Storage Facility, Clab, R-05-62, Svensk Karnbranslehantering AB (SKB), Sweden, 2006. https://www.skb.se/publikation/1472024/R-05-62.pdf.
  16. M.A. McKinnon, C.M. Heeb, J.M. Creer, Decay Heat Measurements and Predictions of BWR Spent Fuel, EPRI NP-4619, Electric Power Research Institute, EPRI, 1986.
  17. D.A. Rochman, A. Vasiliev, A. Dokhane, H. Ferroukhi, Uncertainties for Swiss LWR spent nuclear fuels due to nuclear data, EPJ Nucl. Sci. Technol. 4 (2018) 6, https://doi.org/10.1051/epjn/2018005.
  18. N. Garcia-Herranz, O. Cabellos, F. Alvarez-Velarde, J. Sanz, E.M. Gonzalez-Romero, J. Juan, Nuclear data requirements for the ADS conceptual design EFIT: uncertainty and sensitivity study, Ann. Nucl. Energy 37 (2010) 1570-1579, https://doi.org/10.1016/j.anucene.2010.06.006.
  19. D. Rochman, A. Vasiliev, H. Ferroukhi, T. Zhu, S.C. van der Marck, A.J. Koning, Nuclear data uncertainty for criticality-safety: Monte Carlo vs. linear perturbation, Ann. Nucl. Energy 92 (2016) 150-160, https://doi.org/10.1016/j.anucene.2016.01.042.
  20. G. Ilas, H. Liljenfeldt, Decay heat uncertainty for BWR used fuel due to modeling and nuclear data uncertainties, Nucl. Eng. Des. 319 (2017) 176-184, https://doi.org/10.1016/j.nucengdes.2017.05.009.
  21. O. Leray, D. Rochman, P. Grimm, H. Ferroukhi, A. Vasiliev, M. Hursin, G. Perret, A. Pautz, Nuclear data uncertainty propagation on spent fuel nuclide compositions, Ann. Nucl. Energy 94 (2016) 603-611, https://doi.org/10.1016/j.anucene.2016.03.023.
  22. M.L. Williams, G. Ilas, M.A. Jessee, B.T. Bearden, D. Wiarda, L. Zwermann, M. Gallner, M. Klein, B. Krzykacz-Hausmann, A. Pautz, A statistical sampling method for uncertainty analysis with SCALE and XSUSA, Nucl. Technol. 183 (2013) 515-526. https://doi.org/10.13182/NT12-112
  23. W. Wieselquist, T. Zhu, A. Vasiliev, H. Ferroukhi, PSI methodologies for nuclear data uncertainty propagation with CASMO-5M and MCNPX: results for OECD/NEA UAM benchmark phase I, Sci. Technol. Nucl. Install. (2013), e549793, https://doi.org/10.1155/2013/549793, 2013.
  24. Nuclear Science Committee, Working Party on Nuclear Criticality Safety (WPNCS), Expert Group on Assay Data of Spent Nuclear Fuel (EGADSNF), Evaluation Guide for the Evaluated Spent Nuclear Fuel Assay Database (SFCOMPO), NEA/NSC/R, vol. 8, OCED/NEA, 2016. https://www.oecd-nea.org/science/docs/2015/nsc-r2015-8.pdf.
  25. European Joint Programme on Radioactive Waste Management (EURAD), EU H2020-Euratom-1.2 program, 2020. https://cordis.europa.eu/project/id/847593 (accessed December 28, 2020).
  26. P. Jansson, M. Bengtsson, U. Backstrom, K. Svensson, M. Lycksell, A. Sjoland, Data from calorimetric decay heat measurements of five used PWR 17x17 nuclear fuel assemblies, Data Brief 28 (2020) 104917, https://doi.org/10.1016/j.dib.2019.104917.
  27. L.E. Wiles, N.J. Lornbardo, C.M. Heeh, U.P. Jenquin, T.E. Michener, C.L. Wheeler, J.M. Creer, R.A. McCann, BWR Spent Fuel Storage Cask Performance. Pre-and Post-Test Decay Heat, Heat Transfer, and Shielding Analyses, PNL-5777 Vol. II, USA, 1986.
  28. M.A. McKinnon, J.W. Doman, J.E. Tanner, R.J. Guenther, J.M. Creer, C.E. King, BWR Spent Fuel Storage Cask Performance. Cask Handling Experience and Decay Heat, Heat Transfer, and Shielding Data, PNL-5777, vol. I, 1986. USA.
  29. F. Michel-Sendis, I. Gauld, J.S. Martinez, C. Alejano, M. Bossant, D. Boulanger, O. Cabellos, V. Chrapciak, J. Conde, I. Fast, M. Gren, K. Govers, M. Gysemans, V. Hannstein, F. Havluj, M. Hennebach, G. Hordosy, G. Ilas, R. Kilger, R. Mills, D. Mountford, P. Ortego, G. Radulescu, M. Rahimi, A. Ranta-Aho, K. Rantamaki, B. Ruprecht, N. Soppera, M. Stuke, K. Suyama, S. Tittelbach, C. Tore, S.V. Winckel, A. Vasiliev, T. Watanabe, T. Yamamoto, T. Yamamoto, SFCOMPO2.0: an OECD NEA database of spent nuclear fuel isotopic assays, reactor design specifications, and operating data, Ann. Nucl. Energy 110 (2017) 779-788, https://doi.org/10.1016/j.anucene.2017.07.022.
  30. P.J. Turinsky, Core isotopic depletion and fuel management, in: D.G. Cacuci (Ed.), Handb. Nucl. Eng., Springer US, Boston, MA, 2010, pp. 1241-1312, https://doi.org/10.1007/978-0-387-98149-9_10.
  31. H.T. Hayslett, P. Murphy, Statistics, Elsevier, 1981, https://doi.org/10.1016/C2013-0-01181-4.
  32. N.R. Draper, in: fourth ed., in: B.S. Everitt, A. Skrondal (Eds.), The Cambridge Dictionary of Statistics, vol. 79, 2011, pp. 273-274, https://doi.org/10.1111/j.1751-5823.2011.00149_2.x. Int. Stat. Rev.
  33. S.A. Stouffer, E.A. Suchman, L.C. Devinney, S.A. Star, R.M. Williams, The American Soldier: Adjustment during Army Life. Studies in Social Psychology in World War II, Princeton University Press, Princeton, NJ, 1949.
  34. J.D. Evans, Straightforward Statistics for the Behavioral Sciences, Brooks/Cole Pub. Co., Pacific Grove, 1996.
  35. N. Soppera, M. Bossant, E. Dupont, JANIS 4: an improved version of the NEA java-based nuclear data information system, Nucl. Data Sheets 120 (2014) 294-296, https://doi.org/10.1016/j.nds.2014.07.071.
  36. H. Ezure, Calculation of atom ratios of 134Cs/137Cs, 154-u/137Cs and Pu/U, burnup and most probable production amount of plutonium in fuel assemblies of JPDR-1, J. Nucl. Sci. Technol. 27 (1990) 562-571, https://doi.org/10.1080/18811248.1990.9731221.