DOI QR코드

DOI QR Code

Review of researches on coupled system and CFD codes

  • Received : 2020.12.03
  • Accepted : 2021.03.26
  • Published : 2021.09.25

Abstract

At present, most of the widely used system codes for nuclear safety analysis are one-dimensional, which cannot effectively simulate the flow field of the reactor core or other structures. This is true even for the system codes containing three-dimensional modules with limited three-dimensional simulation function such as RELAP-3D. In contrast, the computational fluid dynamics (CFD) codes excel at providing a detailed three-dimensional flow field of the reactor core or other components; however, the computational domain is relatively small and results in the very high computing resource consuming. Therefore, the development of coupling codes, which can make comprehensive use of the advantages of system and CFD codes, has become a research focus. In this paper, a review focus on the researches of coupled CFD and thermal-hydraulic system codes was carried out, which summarized the method of coupling, the data transfer processing between CFD and system codes, and the verification and validation (V&V) of coupled codes. Furthermore, a series of problems associated with the coupling procedure have been identified, which provide the general direction for the development and V&V efforts of coupled codes.

Keywords

References

  1. N.A. Anderson, Coupling RELAP5-3D and Fluent to analyze a Very High Temperature Reactor (VHTR) outlet plenum (Doctoral dissertation, Texas A&M University), 2006.
  2. D.L. Aumiller, E.T. Tomlinson, W.L. Weaver, An integrated relap5-3d and multiphase cfd code system utilizing a semi-implicit coupling technique, Nucl. Eng. Des. 216 (2002) 77-87. https://doi.org/10.1016/S0029-5493(01)00522-2
  3. R. Baviere, N. Tauveron, F. Perdu, E. Garre, S. Li, A first system/CFD coupled simulation of a complete nuclear reactor transient using CATHARE2 and TRIO_ U. Preliminary validation on the Phenix Reactor Natural Circulation Test, Nucl. Eng. Des. 277 (2014) 124-137. https://doi.org/10.1016/j.nucengdes.2014.05.031
  4. D. Bertolotto, Coupling a System Code with Computational Fluid Dynamics for the Simulation of Complex Coolant Reactivity Effects, Lausanne, EPFL, 2011.
  5. D. Bertolotto, A. Manera, S. Frey, H.M. Prasser, R. Chawla, Single-phase mixing studies by means of a directly coupled CFD/system-code tool, Ann. Nucl. Energy 36 (2009) 310-316. https://doi.org/10.1016/j.anucene.2008.11.027
  6. F. D'Auria, J.L.G. Moreno, G.M. Galassi, D. Grgic, A. Spadoni, Three mile island unit 1 main steam line break three-dimensional neutronics/thermal-hydraulics analysis: application of different coupled codes, Nucl. Technol. 142 (2003) 180-204. https://doi.org/10.13182/nt03-a3383
  7. A.T. Edwards, T.P. O'brien, Studies of phenomena connected with the depressurization of water reactors, J. Brit. Nucl. Energy Soc 9 (2) (1970) 125-135.
  8. T.H. Fanning, J.W. Thomas, Nuclear Engineering Division, Advances in coupled safety modeling using systems analysis and high-fidelity methods. United States. https://doi.org/10.2172/982349.
  9. T.T. Feng, W.X. Tian, P. Song, D.L. Zhang, S.Z. Qiu, Transient characteristics analysis of water hammer phenomena based on coupling program, Atomic Energy Sci. Technol. 51 (2017) 1364-1370.
  10. D. Martelli, N. Forgione, G. Barone, I. Di Piazza, A. Del Nevo, Coupled Simulation of the NACIE Facility using the RELAP5 Thermal System Code and the CFD Ansys FLUENT Code, in: HLMC-2013, 2013, pp. 1-15.
  11. T.K.P.K. Francesco Cadinu, STUDY OF ALGORITHMIC REQUIREMENTS FOR A SYSTEM-TO-CFD COUPLING STRATEGY, 2014.
  12. M. Garcia, R. Tuominen, A. Gommlich, D. Ferraro, V. Valtavirta, et al., A Serpent2-SUBCHANFLOW-TRANSURANUS coupling for pin-by-pin depletion calculations in Light Water Reactors, Ann. Nucl. Energy 139 (2020) 107213. https://doi.org/10.1016/j.anucene.2019.107213
  13. A. Geist, PVM: parallel virtual machine, A Users Guide & Tutorial for Networked Parallel Computing 92 (1994) 19-23.
  14. V.F. Gonzalez-Albuixech, G. Qian, M. Sharabi, M. Niffenegger, B. Niceno, N. Lafferty, Coupled RELAP5, 3D CFD and FEM analysis of postulated cracks in RPVs subjected to PTS loading, Nucl. Eng. Des. 297 (2016) 111-122. https://doi.org/10.1016/j.nucengdes.2015.11.032
  15. T.P. Grunloh, A. Manera, A novel domain overlapping strategy for the multiscale coupling of CFD with 1D system codes with applications to transient flows, Ann. Nucl. Energy 90 (2016) 422-432. https://doi.org/10.1016/j.anucene.2015.12.027
  16. T.P. Grunloh, A. Manera, A novel multi-scale domain overlapping CFD/STH coupling methodology for multi-dimensional flows relevant to nuclear applications, Nucl. Eng. Des. 318 (2017) 85-108. https://doi.org/10.1016/j.nucengdes.2017.03.027
  17. J.J. Jeong, S.K. Sim, C.H. Ban, C.E. Park, Assessment of the COBRA/RELAP5 code using the LOFT L2-3 large-break loss-of-coolant experiment, Ann. Nucl. Energy 24 (1997) 1171-1182. https://doi.org/10.1016/S0306-4549(97)00029-7
  18. J. Jimenez Escalante, V. Di Marcello, V. Sanchez Espinoza, Y. Perin, Application of the ATHLET/COBRA-TF thermal-hydraulics coupled code to the analysis of BWR ATWS, Nucl. Eng. Des. 321 (2017) 318-327. https://doi.org/10.1016/j.nucengdes.2016.10.001
  19. S. Kliem, R. Franz, Quick-look Report of the ROCOM Tests 1.1 and 1.2 Conducted within the OECD PKL2 Project, 2010.
  20. Y. Ku, Y. Tseng, J. Yang, S. Chen, J. Wang, C. Shin, Developments and applications of TRACE/CFD model of maanshan PWR pressure vessel, in: NURETH-16, 2015. Chicago, IL.
  21. H. Kyu Cho, Y.J. Cho, H.Y. Yoon, Heat structure coupling of CUPID and MARS for the multi-scale simulation of the passive auxiliary feedwater system, Nucl. Eng. Des. 273 (2014) 459-468. https://doi.org/10.1016/j.nucengdes.2014.03.017
  22. S.Y. Lee, J.J. Jeong, S.H. Kim, S.H. Chang, COBRA/RELAP5: a merged version of the COBRA-TF and RELAP5/MOD3 codes, Nucl. Technol. 99 (1992) 177-187. https://doi.org/10.13182/NT99-177
  23. W. Li, X. Wu, D. Zhang, G. Su, W. Tian, S. Qiu, Preliminary study of coupling CFD code FLUENT and system code RELAP5, Ann. Nucl. Energy 73 (2014) 96-107. https://doi.org/10.1016/j.anucene.2014.06.042
  24. X.J. Liu, X. Cheng, Sub-channel/system coupled code development and its application to SCWR-FQT loop, Nucl. Eng. Des. 285 (2015) 39-47. https://doi.org/10.1016/j.nucengdes.2015.01.007
  25. Y. Liu, H. Zhang, B.S. Jia, Research on coupling between RELAP5 and CFX codes, Atomic Energy Sci. Technol. 44 (2010) 304-308.
  26. D. Martelli, N. Forgione, G. Barone, W. Ambrosini, Validation of the coupled calculation between RELAP5 STH code and ansys FLUENT CFD code, 2013.
  27. D. Martelli, N. Forgione, G. Barone, A.D. Nevo, I. Di Piazza, M. Tarantino, Coupled simulations OF natural and forced circulation tests IN NACIE facility using RELAP5 and ANSYS FLUENT codes, in: Proceedings of the 2014 22nd International Conference on Nuclear Engineering (ICONE22), 2014 (Prague, Czech Republic).
  28. J. Ming, W. Guowei, W. Xianjuan, B. Yunqing, Z. Zhumin, L. Yazhou, Preliminary study of coupled Fluent and RELAP5 code for heat transfer of leadbased reactor, in: The 14th National Reactor Thermal Fluid Academic Conference of CHINA, 2015 (Beijing, China).
  29. A. Nava Dominguez, Y.F. Rao, T. Beuthe, Advances of the AC-DC code, a coupled computational tool to perform thermalhydraulic modeling of fuel bundles with annular fuel elements, Nucl. Eng. Des. 356 (2020) 110360. https://doi.org/10.1016/j.nucengdes.2019.110360
  30. A. Papukchiev, C. Geffray, M. Jeltsov, K. Kap, P. Kudinov, D. Grischenko, Multiscale analysis of forced and natural convection including heat tranfer phenomena in the TALL-3D experimental facility, in: Proc. Of NURETH-16, 2015 (Chicago, IL).
  31. A. Papukchiev, G. Lerchl, C. Waata, T. Frank, Extension of the simulation capabilities of the 1D system code ATHLET by coupling with the 3D CFD software package ANSYS CFX, in: The 13th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-13), 2009 (Kanazawa City, Ishikawa Prefecture, Japan).
  32. I.K. Park, J.R. Lee, S.W. Lee, H.Y. Yoon, J.J. Jeong, An implicit code coupling of 1-D system code and 3-D in-house CFD code for multi-scaled simulations of nuclear reactor transients, Ann. Nucl. Energy 59 (2013) 80-91. https://doi.org/10.1016/j.anucene.2013.03.048
  33. Q. Peng, H.X. Yu, S. Vandroux, F. Perdu, W. Yang, Analytical study on coupling of CATHARE and TRIO_U code for nuclear reactor thermal-hydraulic analysis, Nucl. Power Eng. 34 (S1) (2013) 201-205.
  34. S. Kliem Thur, MAIN STEAM LINE BREAK ANALYSIS OF A VVER-440 REACTOR USING THE COUPLED THERMOHYDRAULICS SYSTEM/3D-NEUTRON KINETICS CODE DYN3D/ATHLET IN COMBINATION WITH THE CFD CODE CFX-4, 1999.
  35. R.R. Schultz, W.L. Weaver, Using the RELAP5-3D advanced systems analysis code with commercial and advanced CED software, in: The 11th Proceedings Of the International Conference On Nuclear Engineering (ICONE11), 2003.
  36. K.A. Smith, A.J. Baratta, G.E. Robinson, Coupled RELAP5 and CONTAIN accident analysis using PVM, Nucl. Saf. 36 (1995).
  37. G. Theodoridis, A. Papukchiev, D. Scholz, G. Lerchl, A New Data-Driven ATHLET-ANSYS CFD Coupling Method for Efficient Simulation of Nuclear Power Plant Circuits, in: International Conference on Nuclear Engineering (Vol. 45943, p. V004T10A047), American Society of Mechanical Engineers, 2014, July.
  38. M.J. Thurgood, T.E. Guidotti, G.A. Sly, J.M. Kelly, R.J. Kohrt, COBRA/TRAC - a thermal-hydraulics code for transient analysis of nuclear reactor vessels and primary coolant systems, Developmental Assessment and Data Comparisons 4 (1983).
  39. A. Toti, J. Vierendeels, F. Belloni, Improved numerical algorithm and experimental validation of a system thermal-hydraulic/CFD coupling method for multi-scale transient simulations of pool-type reactors, Ann. Nucl. Energy 103 (2017) 36-48. https://doi.org/10.1016/j.anucene.2017.01.002
  40. A. Toti, J. Vierendeels, F. Belloni, Extension and application on a pool-type test facility of a system thermal-hydraulic/CFD coupling method for transient flow analyses, Nucl. Eng. Des. 331 (2018) 83-96. https://doi.org/10.1016/j.nucengdes.2018.02.004
  41. E. Volpenhein, RELAP5-3D Coupling with STAR-CCM, 2013.
  42. L. Vyskocil, J. Macek, Coupling CFD code with system code and neutron kinetic code, Nucl. Eng. Des. 279 (2014b) 210-218. https://doi.org/10.1016/j.nucengdes.2014.02.011
  43. T. Watanabe, Y. Anoda, M. Takano, System-CFD coupled simulations of flow instability in steam generator U tubes, Ann. Nucl. Energy 70 (2014) 141-146. https://doi.org/10.1016/j.anucene.2014.02.029
  44. L. Xing, H. Yeung, Y. Geng, Y. Cao, J. Shen, Study on hydrodynamic slug flow mitigation with wavy pipe using a 3D-1D coupling approach, Comput. Fluids 99 (2014) 104-115. https://doi.org/10.1016/j.compfluid.2014.04.023
  45. Y. Yan, Rizwan-uddin, COUPLED CFD-SYSTEM-CODE SIMULATION OF A GAS COOLED REACTOR, American Nuclear Society, 2011a.
  46. Y. Yan, Development of a coupled CFD-system-code capability (with a modified porous media model) and its applications to simulate current and next generation reactors (Doctoral dissertation, University of Illinois at Urbana-Champaign), 2012.
  47. B. Yang, J. Long, H. Ninokata, et al., Subchannel analysis-current practice and development for the future, Nucl. Energy Des. (2020). In preparation.
  48. D. Ziabletsev, M. Avramova, K. Ivanov, Development of pressurized water reactor integrated safety analysis methodology using multilevel coupling algorithm, Nucl. Sci. Eng. 148 (2004) 414-425. https://doi.org/10.13182/nse04-a2467
  49. D.L. Aumiller, E.T. Tomlinson, R.C. Bauer, A coupled RELAP5-3D/CFD methodology with a proof-of-principle calculation, Nucl. Eng. Des. 205 (1/2) (2001) 83-90. https://doi.org/10.1016/S0029-5493(00)00370-8

Cited by

  1. MHD R&D Activities for Liquid Metal Blankets vol.14, pp.20, 2021, https://doi.org/10.3390/en14206640