DOI QR코드

DOI QR Code

Evaluation of 475 ℃ embrittlement in UNS S32750 super duplex stainless steel using four-point electric conductivity measurements

  • Gutierrez-Vargas, Gildardo (Instituto de Investigacion en Metalurgia y Materiales, Universidad Michoacana de San Nicolas de Hidalgo) ;
  • Ruiz, Alberto (Instituto de Investigacion en Metalurgia y Materiales, Universidad Michoacana de San Nicolas de Hidalgo) ;
  • Lopez-Morelos, Victor H. (Instituto de Investigacion en Metalurgia y Materiales, Universidad Michoacana de San Nicolas de Hidalgo) ;
  • Kim, Jin-Yeon (GWW School of Mechanical Engineering, Georgia Institute of Technology) ;
  • Gonzalez-Sanchez, Jorge (Center for Corrosion Research, Autonomous University of Campeche) ;
  • Medina-Flores, Ariosto (Instituto de Investigacion en Metalurgia y Materiales, Universidad Michoacana de San Nicolas de Hidalgo)
  • 투고 : 2020.01.09
  • 심사 : 2021.03.20
  • 발행 : 2021.09.25

초록

One of the consequences of the 475 ℃ embrittlement of duplex stainless steels is the reduction of the resistance to localized corrosion. Therefore, the detection of this type of embrittlement before the material exhibits significant loss in toughness, and corrosion resistance is important to ensure the structural integrity of critical components under corrosion threats. In this research, conductivity measurements are performed using the alternating current potential drop (ACPD) technique with using a portable four-point probe as a nondestructive evaluation (NDE) method for detecting the embrittlement in a 2507 (UNS S32750) super duplex stainless steel (SDSS) aged at 475 ℃ from as-received condition to 300 h. The electric conductivity results were compared against two electrochemical tests namely double loop electrochemical potentiokinetic reactivation (DL-EPR) and critical pitting temperature (CPT). Mechanical tests and the microstructure characterized using scanning electron microscopy (SEM) imaging are conducted to track the progress of embrittlement. It is shown that the electric conductivity correlates with the changes in impact energy, microhardness, and CPT corrosion tests result demonstrating the feasibility of the four-point probe as a possible field-deployable method for evaluating the 475 ℃ embrittlement of 2507 SDSS.

키워드

과제정보

This work was supported by SENER-CONACYT Mexico under the project: CEMIE-Geo-P18. The authors wish to thank the Universidad Michoacana de San Nicolas de Hidalgo (Coordinacion de la Investigacion Cientifica for their support). Gildardo Gutierrez Vargas wish to thank CONACYT-MEXICO for the support provided during his doctoral studies.

참고문헌

  1. J.O. Nilsson, Super duplex stainless steels, Mater. Sci. Technol. 8 (1992) 685-700. https://doi.org/10.1179/mst.1992.8.8.685
  2. D. Chandra, L.H. Schwartz, Mossbauer effect study of the 475℃ decomposition of Fe-Cr, Metallur. Transact. 2 (1971) 511-519. https://doi.org/10.1007/BF02663342
  3. P.J. Grobner, The 885 °F(475 ℃) embrittlement of ferritic stainless steels, Metallur. Transact. 4 (1973) 251-260. https://doi.org/10.1007/BF02649625
  4. F. Iacoviello, F. Casari, S. Gialanella, Effect of "475 ℃ embrittlement" on duplex stainless steels localized corrosion resistance, Corrosion Sci. 47 (2005) 909-922. https://doi.org/10.1016/j.corsci.2004.06.012
  5. C.-J. Park, H.-S. Kwon, Effects of aging at 475 ℃ on corrosion properties of tungsten-containing duplex stainless steels, Corrosion Sci. 44 (2002) 2817-2830. https://doi.org/10.1016/S0010-938X(02)00079-3
  6. M.K. Miller, I.M. Anderson, J. Bentley, K.F. Russell, Phase separation in the Fe-Cr-Ni system, Appl. Surf. Sci. 94-95 (1996) 391-397. https://doi.org/10.1016/0169-4332(95)00402-5
  7. C. rnek Ouml, M. Burke, T. Hashimoto, J. Lim, D. Engelberg, C. Ornek, 475 ℃ embrittlement of duplex stainless steel-a comprehensive microstructure characterization study, Mater. Performance Charact. 6 (2017) 409-436.
  8. H.D. Solomon, L.M. Levinson, Mossbauer effect study of '475°c embrittlement' of duplex and ferritic stainless steels, Acta Metall. 26 (1978) 429-442. https://doi.org/10.1016/0001-6160(78)90169-4
  9. K. Chandra, R. Singhal, V. Kain, V. Raja, Low temperature embrittlement of duplex stainless steel: correlation between mechanical and electrochemical behavior, Mater. Sci. Eng., A 527 (2010) 3904-3912. https://doi.org/10.1016/j.msea.2010.02.069
  10. J.W. Cahn, On spinodal decomposition, Acta Metall. 9 (1961) 795-801. https://doi.org/10.1016/0001-6160(61)90182-1
  11. K. Weng, H. Chen, J. Yang, The low-temperature aging embrittlement in a 2205 duplex stainless steel, Mater. Sci. Eng., A 379 (2004) 119-132. https://doi.org/10.1016/j.msea.2003.12.051
  12. M. Hattestrand, P. Larsson, G. Chai, J.-O. Nilsson, J. Odqvist, Study of decomposition of ferrite in a duplex stainless steel cold worked and aged at 450-500℃, Mater. Sci. Eng., A 499 (2009) 489-492. https://doi.org/10.1016/j.msea.2008.09.021
  13. J. Sahu, U. Krupp, R. Ghosh, H.-J. Christ, Effect of 475 C embrittlement on the mechanical properties of duplex stainless steel, Mater. Sci. Eng., A 508 (2009) 1-14. https://doi.org/10.1016/j.msea.2009.01.039
  14. P. Hedstrom, F. Huyan, J. Zhou, S. Wessman, M. Thuvander, J. Odqvist, The 475℃ embrittlement in Fe-20Cr and Fe-20Cr-X (X=Ni, Cu, Mn) alloys studied by mechanical testing and atom probe tomography, Mater. Sci. Eng., A 574 (2013) 123-129. https://doi.org/10.1016/j.msea.2013.03.016
  15. O.A. Hilders, M. Ramos, N.D. Pena, L. Saenz, Effect of 475 ℃ embrittlement on fractal behavior and tensile properties of a duplex stainless steel, J. Mater. Eng. Perform. 8 (1999) 87-90. https://doi.org/10.1361/105994999770347214
  16. K.-H. Park, J.C. LaSalle, L.H. Schwartz, M. Kato, Mechanical properties of spinodally decomposed Fe-30 wt% Cr alloys: yield strength and aging embrittlement, Acta Metall. 34 (1986) 1853-1865. https://doi.org/10.1016/0001-6160(86)90130-6
  17. R. Gunn, Duplex Stainless Steels: Microstructure, Properties and Applications, Elsevier Science, 1997.
  18. F. Danoix, P. Auger, Atom probe studies of the Fe-Cr system and stainless steels aged at intermediate temperature: a review, Mater. Char. 44 (2000) 177-201. https://doi.org/10.1016/S1044-5803(99)00048-0
  19. A. Girones, L. Llanes, M. Anglada, A. Mateo, Dynamic strain ageing effects on superduplex stainless steels at intermediate temperatures, Mater. Sci. Eng., A 367 (2004) 322-328. https://doi.org/10.1016/j.msea.2003.10.293
  20. S.S.M. Tavares, A. Loureiro, J.M. Pardal, T.R. Montenegro, V.C. da Costa, Influence of heat treatments at 475 and 400 ℃ on the pitting corrosion resistance and sensitization of UNS S32750 and UNS S32760 superduplex stainless steels, Mater. Corros. 63 (2012) 522-526. https://doi.org/10.1002/maco.201006016
  21. H.M. Chung, Aging and life prediction of cast duplex stainless steel components, Int. J. Pres. Ves. Pip. 50 (1992) 179-213. https://doi.org/10.1016/0308-0161(92)90037-G
  22. S. Li, Y. Wang, X. Wang, F. Xue, G-phase precipitation in duplex stainless steels after long-term thermal aging: a high-resolution transmission electron microscopy study, J. Nucl. Mater. 452 (2014) 382-388. https://doi.org/10.1016/j.jnucmat.2014.05.069
  23. A. Mateo, L. Llanes, M. Anglada, A. Redjaimia, G. Metauer, Characterization of the intermetallic G-phase in an AISI 329 duplex stainless steel, J. Mater. Sci. 32 (1997) 4533-4540. https://doi.org/10.1023/A:1018669217124
  24. S. Tsuchiya, Y. Ishikawa, M. Ohtaka, T. Yoshimura, Atom probe study of the aging embrittlement of cast duplex stainless steel, JSME Int. J. Ser. A Mech. Material Eng. 38 (1995) 384-392. https://doi.org/10.1299/jsmea1993.38.3_384
  25. T. Yamada, S. Okano, H. Kuwano, Mechanical property and microstructural change by thermal aging of SCS14A cast duplex stainless steel, J. Nucl. Mater. 350 (2006) 47-55. https://doi.org/10.1016/j.jnucmat.2005.11.008
  26. A.F. Padilha, R.L. Plaut, P.R. Rios, Stainless Steel Heat Treatment, CRC Press, Boca Raton, 2006.
  27. A. Isalgue, M. Anglada, J. Rodriguez-Carvajal, A. De Geyer, Study of the spinodal decomposition of an Fe-28Cr-2Mo-4Ni-Nb alloy by small-angle neutron scattering, J. Mater. Sci. 25 (1990) 4977-4980. https://doi.org/10.1007/BF00580116
  28. Y.S. Yi, T. Shoji, Detection and evaluation of material degradation of thermally aged duplex stainless steels: electrochemical polarization test and AFM surface analysis, J. Nucl. Mater. 231 (1996) 20-28. https://doi.org/10.1016/0022-3115(96)00361-3
  29. J.S. Park, Y.K. Yoon, Evaluation of thermal aging embrittlement of duplex stainless steels by electrochemical method, Scripta Metall. Mater. 32 (1995) 1163-1168. https://doi.org/10.1016/0956-716X(95)00119-G
  30. M. Tane, T. Ichitsubo, H. Ogi, M. Hirao, Elastic property of aged duplex stainless steel, Scripta Mater. 48 (2003) 229-234. https://doi.org/10.1016/S1359-6462(02)00388-3
  31. S.S.M. Tavares, M.R. da Silva, J.M. Neto, Magnetic property changes during embrittlement of a duplex stainless steel, J. Alloys Compd. 313 (2000) 168-173. https://doi.org/10.1016/S0925-8388(00)01062-8
  32. K.H. Lo, J.K.L. Lai, Microstructural characterisation and change in a.c. magnetic susceptibility of duplex stainless steel during spinodal decomposition, J. Nucl. Mater. 401 (2010) 143-148. https://doi.org/10.1016/j.jnucmat.2010.04.014
  33. D.H. Michael, R.T. Waechter, R. Collins, The measurement of surface cracks in metals by using a.c. Electric fields, Proc. Roy. Soc. Lond. Math. Phys. Sci. 381 (1982) 139-157.
  34. I.S. Hwang, A multi-frequency AC potential drop technique for the detection of small cracks, Meas. Sci. Technol. 3 (1992) 62-74. https://doi.org/10.1088/0957-0233/3/1/009
  35. E. Madhi, P. Nagy, Sensitivity analysis of a directional potential drop sensor for creep monitoring, NDT E Int. 44 (2011) 708-717. https://doi.org/10.1016/j.ndteint.2011.08.001
  36. J. Corcoran, P.B. Nagy, P. Cawley, Monitoring creep damage at a weld using a potential drop technique, Int. J. Pres. Ves. Pip. (2017) 15-25.
  37. S. Prajapati, P.B. Nagy, P. Cawley, Potential drop detection of creep damage in the vicinity of welds, NDT E Int. 47 (2012) 56-65. https://doi.org/10.1016/j.ndteint.2011.11.014
  38. J.R. Bowler, Y. Huang, H. Sun, J. Brown, N. Bowler, Alternating current potential-drop measurement of the depth of case hardening in steel rods, Meas. Sci. Technol. 19 (2008), 075204. https://doi.org/10.1088/0957-0233/19/7/075204
  39. V.S. Moura, L.D. Lima, J.M. Pardal, A.Y. Kina, R.R.A. Corte, S.S.M. Tavares, Influence of microstructure on the corrosion resistance of the duplex stainless steel UNS S31803, Mater. Char. 59 (2008) 1127-1132. https://doi.org/10.1016/j.matchar.2007.09.002
  40. N. Lopez, M. Cid, M. Puiggali, I. Azkarate, A. Pelayo, Application of double loop electrochemical potentiodynamic reactivation test to austenitic and duplex stainless steels, Mater. Sci. Eng., A 229 (1997) 123-128. https://doi.org/10.1016/S0921-5093(97)00008-7
  41. N. Ebrahimi, M. Momeni, M.H. Moayed, A. Davoodi, Correlation between critical pitting temperature and degree of sensitisation on alloy 2205 duplex stainless steel, Corrosion Sci. 53 (2011) 637-644. https://doi.org/10.1016/j.corsci.2010.10.009
  42. Z. Zhang, H. Jing, L. Xu, Y. Han, L. Zhao, J. Zhang, Influence of microstructure and elemental partitioning on pitting corrosion resistance of duplex stainless steel welding joints, Appl. Surf. Sci. 394 (2017) 297-314. https://doi.org/10.1016/j.apsusc.2016.10.047
  43. Y. Kawaguchi, S. Yamanaka, Mechanism of the change in thermoelectric power of cast duplex stainless steel due to thermal aging, J. Alloys Compd. 336 (2002) 301-314. https://doi.org/10.1016/S0925-8388(01)01897-7
  44. K.S. de Assis, F.V. de Sousa, M. Miranda, I.C. Margarit-Mattos, V. Vivier, O.R. Mattos, Assessment of electrochemical methods used on corrosion of superduplex stainless steel, Corrosion Sci. 59 (2012) 71-80. https://doi.org/10.1016/j.corsci.2012.02.014
  45. R. Silva, L. Baroni, C. Kugelmeier, M. Silva, S. Kuri, C. Rovere, Thermal aging at 475 C of newly developed lean duplex stainless steel 2404: mechanical properties and corrosion behavior, Corrosion Sci. 116 (2017) 66-73. https://doi.org/10.1016/j.corsci.2016.12.014
  46. L. Pezzato, M. Lago, K. Brunelli, M. Breda, I. Calliari, Effect of the heat treatment on the corrosion resistance of duplex stainless steels, J. Mater. Eng. Perform. 27 (2018) 3859-3868. https://doi.org/10.1007/s11665-018-3408-5
  47. Z. Zhang, H. Zhao, H. Zhang, Z. Yu, J. Hu, L. He, J. Li, Effect of isothermal aging on the pitting corrosion resistance of UNS S82441 duplex stainless steel based on electrochemical detection, Corrosion Sci. 93 (2015) 120-125. https://doi.org/10.1016/j.corsci.2015.01.014
  48. W. Horvath, W. Prantl, H. Stroissnigg, E.A. Werner, Microhardness and microstructure of austenite and ferrite in nitrogen alloyed duplex steels between 20 and 500℃, Mater. Sci. Eng., A 256 (1998) 227-236. https://doi.org/10.1016/S0921-5093(98)00839-9
  49. J.D. Tucker, M.K. Miller, G.A. Young, Assessment of thermal embrittlement in duplex stainless steels 2003 and 2205 for nuclear power applications, Acta Mater. 87 (2015) 15-24. https://doi.org/10.1016/j.actamat.2014.12.012
  50. R. Silva, L.F.S. Baroni, C.L. Kugelmeier, M.B.R. Silva, S.E. Kuri, C.A.D. Rovere, Thermal aging at 475℃ of newly developed lean duplex stainless steel 2404: mechanical properties and corrosion behavior, Corrosion Sci. 116 (2017) 66-73. https://doi.org/10.1016/j.corsci.2016.12.014
  51. G. Gutierrez-Vargas, A. Ruiz, J.-Y. Kim, V.H. Lopez-Morelos, R.R. Ambriz, Evaluation of thermal embrittlement in 2507 super duplex stainless steel using thermoelectric power, Nucl. Eng. Technol. 51 (2019) 1816-1821. https://doi.org/10.1016/j.net.2019.05.017
  52. G. Gutierrez-Vargas, A. Ruiz, J.-Y. Kim, L.J. Jacobs, Characterization of thermal embrittlement in 2507 super duplex stainless steel using nonlinear acoustic effects, NDT E Int. 94 (2018) 101-108. https://doi.org/10.1016/j.ndteint.2017.12.004

피인용 문헌

  1. The effect of high temperature aging on the corrosion resistance, mechanical property and antibacterial activity of Cu-2205 DSS vol.211, 2022, https://doi.org/10.1016/j.colsurfb.2021.112309