DOI QR코드

DOI QR Code

A mechanistic analysis of H2O and CO2 diluent effect on hydrogen flammability limit considering flame extinction mechanism

  • Jeon, Joongoo (Department of Nuclear Engineering, Hanyang University) ;
  • Kim, Yeon Soo (Department of Nuclear Engineering, Hanyang University) ;
  • Jung, Hoichul (Department of Nuclear Engineering, Hanyang University) ;
  • Kim, Sung Joong (Department of Nuclear Engineering, Hanyang University)
  • Received : 2020.10.12
  • Accepted : 2021.05.05
  • Published : 2021.10.25

Abstract

The released hydrogen can be ignited even with weak ignition sources. This emphasizes the importance of the hydrogen flammability evaluation to prevent catastrophic failure in hydrogen related facilities including a nuclear power plant. Historically numerous attempts have been made to determine the flammability limit of hydrogen mixtures including several diluents. However, no analytical model has been developed to accurately predict the limit concentration for mixtures containing radiating gases. In this study, the effect of H2O and CO2 on flammability limit was investigated through a numerical simulation of lean limit hydrogen flames. The previous flammability limit model was improved based on the mechanistic investigation, with which the amount of indirect radiation heat loss could be estimated by the optically thin approximation. As a result, the sharp increase in limit concentration by H2O could be explained by high thermal diffusivity and radiation rate. Despite the high radiation rate, however, CO2 with the lower thermal diffusivity than the threshold cannot produce a noticeable increase in heat loss and ultimately limit concentration. We concluded that the proposed mechanistic analysis successfully explained the experimental results even including radiating gases. The accuracy of the improved model was verified through several flammability experiments for H2-air-diluent.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) and funded by the Ministry of Science, ICT, and Future Planning, Republic of Korea (grant numbers NRF-2016R1A5A1013919 and NRF-2021M2D2A2076382).

References

  1. J. Kim, U. Lee, S.W. Hong, S.B. Kim, H.D. Kim, Spray effect on the behavior of hydrogen during severe accidents by a loss-of-coolant in the APR1400 containment, Int. Commun. Heat Mass 33 (10) (2006) 1207-1216. https://doi.org/10.1016/j.icheatmasstransfer.2006.08.014
  2. A. Bentaib, N. Meynet, A. Bleyer, Overview on hydrogen risk research and development activities: methodology and open issues, Nucl. Eng. Technol. 47 (1) (2015) 26-32. https://doi.org/10.1016/j.net.2014.12.001
  3. N.K. Kim, J. Jeon, W. Choi, S.J. Kim, Systematic hydrogen risk analysis of OPR1000 containment before RPV failure under station blackout scenario, Ann. Nucl. Energy 116 (2018) 429-438. https://doi.org/10.1016/j.anucene.2018.02.050
  4. J. Jeon, Y.S. Kim, W. Choi, S.J. Kim, Identification of Hydrogen Flammability in steam generator compartment of OPR1000 using MELCOR and CFX codes, Nucl. Eng. Technol. 51 (2019) 1939-1950. https://doi.org/10.1016/j.net.2019.06.024
  5. P. Nikolaidis, A. Poullikkas, A comparative overview of hydrogen production processes, Renew. Sustain. Energy Rev. 67 (2017) 597-611. https://doi.org/10.1016/j.rser.2016.09.044
  6. J. Jeon, S.J. Kim, Recent progress in hydrogen flammability prediction for the safe energy systems, Energies 13 (23) (2020) 6263. https://doi.org/10.3390/en13236263
  7. A.C. Egerton, J. Powling, The limits of flame propagation at atmospheric pressure II. The influence of changes in the physical properties, Proc. Royal Soc. A 193 (1033) (1948) 190-209.
  8. M.G. Zabetakis, Flammability Characteristics of Combustible Gases and Vapors, Bureau of Mines, Washington DC, 1965.
  9. M. Vidal, W. Wong, W. Rogers, M.S. Mannan, Evaluation of lower flammability limits of fueleairediluent mixtures using calculated adiabatic flame temperatures, J. Hazard Mater. 130 (1) (2006) 21-27. https://doi.org/10.1016/j.jhazmat.2005.07.080
  10. G. Shu, B. Long, H. Tian, H. Wei, X. Liang, Flame temperature theory-based model for evaluation of the flammable zones of hydrocarbon-air-CO2 mixtures, J. Hazard Mater. 294 (2015) 137-144. https://doi.org/10.1016/j.jhazmat.2015.03.064
  11. M. Wu, G. Shu, R. Chen, H. Tian, X. Wang, Y. Wang, A new model based on adiabatic flame temperature for evaluation of the upper flammable limit of alkane-air-CO2 mixtures, J. Hazard Mater. 344 (2018) 450-457. https://doi.org/10.1016/j.jhazmat.2017.10.030
  12. H.J. Liaw, K.Y. Chen, A model for predicting temperature effect on flammability limits, Fuel 178 (2016) 179-187. https://doi.org/10.1016/j.fuel.2016.03.034
  13. F. Zhao, W.J. Rogers, M.S. Mannan, Calculated flame temperature (CFT) modeling of fuel mixture lower flammability limits, J. Hazard Mater. 174 (1-3) (2010) 416-423. https://doi.org/10.1016/j.jhazmat.2009.09.069
  14. A.L. Sanchez, F.A. Williams, Recent advances in understanding of flammability characteristics of hydrogen, Prog. Energy Combust. 41 (2014) 1-55. https://doi.org/10.1016/j.pecs.2013.10.002
  15. E. Fern andez-Tarrazo, A.L. Sanchez, A. Linan, F.A. Williams, Flammability conditions for ultra-lean hydrogen premixed combustion based on flame-ball analyses, Int. J. Hydrogen Energy 37 (2) (2012) 1813-1825. https://doi.org/10.1016/j.ijhydene.2011.10.037
  16. I. Yakovenko, M. Ivanov, A. Kiverin, K. Melnikova, Large-scale flame structures in ultra-lean hydrogen-air mixtures, Int. J. Hydrogen Energy 43 (3) (2018) 1894-1901. https://doi.org/10.1016/j.ijhydene.2017.11.138
  17. Y. Dong, A.T. Holley, M.G. Andac, F.N. Egolfopoulos, S.G. Davies, P. Middha, H. Wang, Extinction of premixed H2/air flames: chemical kinetics and molecular diffusion effects, Combust. Flame 142 (4) (2005) 374-387. https://doi.org/10.1016/j.combustflame.2005.03.017
  18. J.H. Lee, M. Berman, Hydrogen combustion and its application to nuclear reactor safety, Adv. Heat Tran. 29 (1997) 59-127. https://doi.org/10.1016/S0065-2717(08)70184-9
  19. J. Jeon, W. Choi, S.J. Kim, A flammability limit model for hydrogen-air-diluent mixtures based on heat transfer characteristics in flame propagation, Nucl. Eng. Technol. 51 (2019) 1749-1757. https://doi.org/10.1016/j.net.2019.05.005
  20. Y.S. Kim, J. Jeon, C.H. Song, S.J. Kim, Improved prediction model for H2/CO combustion risk using a calculated non-adiabatic flame temperature model, Nucl. Eng. Technol. 52 (12) (2020) 2836-2846. https://doi.org/10.1016/j.net.2020.07.040
  21. Z. Zhou, Y. Shoshin, F.E. Hern andez-Perez, J.A. van Oijen, L.P. de Goey, Experimental and numerical study of cap-like lean limit flames in H2-CH4-air mixtures, Combust. Flame 189 (2018) 212-224. https://doi.org/10.1016/j.combustflame.2017.10.031
  22. Z. Zhou, Y. Shoshin, F.E. Hernandez-Perez, J.A. van Oijen, L.P. de Goey, Effect of Lewis number on ball-like lean limit flames, Combust. Flame 188 (2018) 77-89. https://doi.org/10.1016/j.combustflame.2017.09.023
  23. M. Terpstra, Flammability Limits of Hydrogen-Diluent Mixtures in Air, MSc thesis, University of Calgary, 2012.
  24. R. Kumar, Flammability limits of hydrogen-oxygen-diluent mixtures, J. Fire Sci. 3 (4) (1985) 245-262. https://doi.org/10.1177/073490418500300402
  25. B.W. Marshall, Hydrogen:air: Steam Flammability Limits and Combustion Characteristics in the FITS Vessel, Sandia National Laboratories, Albuquerque, 1986.
  26. Y. Shoshin, L. Tecce, J. Jarosinski, Experimental and computational study of lean limit methane-air flame propagating upward in a 24 mm diameter tube, Combust. Sci. Technol. 180 (10-11) (2008) 1812-1828. https://doi.org/10.1080/00102200802260573
  27. H. Bordbar, G.C. Fraga, S. Hostikka, An extended weighted-sum-of-gray-gases model to account for all CO2-H2O molar fraction ratios in thermal radiation, Int. Commun. Heat Mass 110 (2020), 104400. https://doi.org/10.1016/j.icheatmasstransfer.2019.104400
  28. G. Krishnamoorthy, A new weighted-sum-of-gray-gases model for CO2-H2O gas mixtures, Int. Commun. Heat Mass 37 (9) (2010) 1182-1186. https://doi.org/10.1016/j.icheatmasstransfer.2010.07.007
  29. J. Jeon, H. Jung, Y.S. Kim, S.J. Kim, Numerical Study of Lean Limit Hydrogen Flames Propagating Upward to Validate a Flammability Limit Model, NURETH-18, Portland, 2019, pp. 4362-4371.
  30. S.R. Turns, An Introduction to Combustion, third ed., McGraw-Hill, New York, 1996, pp. 293-300.
  31. E. Mayer, A theory of flame propagation limits due to heat loss, Combust. Flame 1 (4) (1957) 438-452. https://doi.org/10.1016/0010-2180(57)90005-6
  32. J. Jeon, D. Shin, W. Choi, S.J. Kim, Identification of the extinction mechanism of lean limit hydrogen flames based on recirculation heat transfer, Int. J. Heat Mass Tran. 174 (2021), 121288. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121288
  33. F.E. Hernandez-P erez, B. Oostenrijk, Y. Shoshin, J.A. van Oijen, L.P. de Goey, Formation, prediction and analysis of stationary and stable ball-like flames at ultra-lean and normal-gravity conditions, Combust. Flame 162 (4) (2015) 932-943. https://doi.org/10.1016/j.combustflame.2014.09.020
  34. Y. Shoshin, L. De Goey, Experimental study of lean flammability limits of methane/hydrogen/air mixtures in tubes of different diameters, Exp. Therm. Fluid Sci. 34 (3) (2010) 373-380. https://doi.org/10.1016/j.expthermflusci.2009.10.027
  35. V.V. Volodin, V.V. Golub, A.D. Kiverin, K.S. Melnikova, A.Y. Mikushkin, I.S. Yakovenko, Large-scale dynamics of ultra-lean hydrogen-air flame kernels in terrestrial gravity conditions, Combust. Sci. Technol. 193 (2) (2021) 225-234. https://doi.org/10.1080/00102202.2020.1748606
  36. Y. Shoshin, J. Jarosinski, On extinction mechanism of lean limit methane-air flame in a standard flammability tube, Proc. Combust. Inst. 32 (1) (2009) 1043-1050. https://doi.org/10.1016/j.proci.2008.06.093
  37. J. Jarosinski, R. Strehlow, A. Azarbarzin, The mechanisms of lean limit extinguishment of an upward and downward propagating flame in a standard flammability tube, Symp. (Int.) Combust. 19 (1) (1982) 1549-1557.
  38. Y. Ju, H. Guo, K. Maruta, F. Liu, On the extinction limit and flammability limit of non-adiabatic stretched methaneeair premixed flames, J. Fluid Mech. 342 (1997) 315-334. https://doi.org/10.1017/S0022112097005636
  39. A.R. Tajik, P. Kuntikana, S.V. Prabhu, V. Hindasageri, Effect of preheated mixture on heat transfer characteristics of impinging methaneeair premixed flame jet, Int. J. Heat Mass Tran. 86 (2015) 550-562. https://doi.org/10.1016/j.ijheatmasstransfer.2015.03.040
  40. Z. Wei, C. Leung, C. Cheung, Z. Huang, Effects of H2 and CO2 addition on the heat transfer characteristics of laminar premixed biogasehydrogen Bunsen flame, Int. J. Heat Mass Tran. 98 (2016) 359-366. https://doi.org/10.1016/j.ijheatmasstransfer.2016.02.064
  41. H.F. Coward, G.W. Jones, Limits of Flammability of Gases and Vapors, Bureau of Mines, Washington DC, 1952.
  42. C. Law, F. Egolfopoulos, A unified chain-thermal theory of fundamental flammability limits, Symp. (Int.) Combust. 24 (1) (1992) 137-144.
  43. K. Lakshmisha, P. Paul, H. Mukunda, On the flammability limit and heat loss in flames with detailed chemistry, Symp. (Int.) Combust. 23 (1) (1991) 433-440.
  44. V.J. Mascarenhas, C.N. Weber, P.R. Westmoreland, Estimating flammability limits through predicting non-adiabatic laminar flame properties, Proc. Combust. Inst. 38 (2021) 4673-4681. https://doi.org/10.1016/j.proci.2020.06.026
  45. S. Zheng, R. Sui, Y. Yang, Y. Sun, H. Zhou, Q. Lu, An improved full-spectrum correlated-k-distribution model for non-gray radiative heat transfer in combustion gas mixtures, Int. Commun. Heat Mass 114 (2020), 104566. https://doi.org/10.1016/j.icheatmasstransfer.2020.104566
  46. R. Seigel, J.R. Howell, Thermal Radiation Heat Transfer, McGraw-Hil, New York, 1981, p. 836.
  47. A.L. S anchez, E. Fern andez-Tarrazo, P. Boivin, A. Lin~an, F.A. Williams, Ignition time of hydrogeneair diffusion flames, Compt. Rendus Mec. 340 (2012) 882-893. https://doi.org/10.1016/j.crme.2012.10.035
  48. D. Fernandez-Galisteo, A. S anchez, A. Linan, F. Williams, The hydrogen-air burning rate near the lean flammability limit, Combust. Theor. Model. 13 (4) (2009) 741-761. https://doi.org/10.1080/13647830903154559
  49. M.G. Plys, Hydrogen production and combustion in severe reactor accidents: an integral assessment perspective, Nucl. Technol. 101 (1993) 400-410. https://doi.org/10.13182/NT93-A34796
  50. B. Bregeon, A.S. Gordon, F.A. Williams, Near-limit downward propagation of hydrogen and methane flames in oxygen nitrogen mixtures, Combust. Flame 33 (1978) 33-45. https://doi.org/10.1016/0010-2180(78)90043-3