DOI QR코드

DOI QR Code

Influence of pozzolans on properties of cementitious materials: A review

  • Garg, Rishav (Department of Civil Engineering, Galgotias College of Engineering and Technology) ;
  • Garg, Rajni (Department of Chemistry, Rayat Bahra University) ;
  • Eddy, Nnabuk Okon (Department of Pure and Industrial Chemistry, University of Nigerie)
  • Received : 2021.05.15
  • Accepted : 2021.08.17
  • Published : 2021.10.25

Abstract

Use of additives/supplementary materials in partial substitution of cement is gaining widespread attention across the world due to the sustainability issue with production of cement. With their pozzolanic activity & filler effect, use of nano-pozzolans such as nano-silica has been proved as quite promising & cost-effective for use as supplementary cementitious materials. This study is aimed at highlighting the effect of partial substitution of cement/addition of various nano-pozzolans on the hydration, strength and microstructure of the cementitious materials. Further, the effect of incorporation of other pozzolans has also been discussed. Comparative account of pozzolanic activity of different pozzolans has also been critically analyzed. It has been found that the cement matrix gets improved in terms of its microstructure by partial substitution of cement/addition of pozzolan in appropriate amount resulting in enhancement of the bulk properties by consumption of portlandite. The improved compressive strength of cementitious materials not only results in enhancement of the durability but also the service life of the construction structures and results in reduction of the cost incurred in maintenance and repair. Thus, the cement demand can be decreased by the partial substitution of cement/addition of such materials. It will result in an ultimate reduction of the greenhouse effect and lead to sustainable development.

Keywords

References

  1. Aleem, S.A.E., Heikal, M. and Morsi, W.M. (2014), "Hydration characteristic, thermal expansion and microstructure of cement containing nano-silica", Constr. Build. Mater., 59, 151-160. https://doi.org/10.1016/j.conbuildmat.2014.02.039.
  2. Qudoos, A., Jakhrani, S.H., Kim, H.G. and Ryou, J.S. (2019), "Influence of nano-silica on the leaching attack upon photocatalytic cement mortars", Int. J. Concr. Struct. Mater., 13(1), 35. https://doi.org/10.1186/s40069-019-0348-x.
  3. Bescher, E., Rice, E.K., Ramseyer, C. and Roswurm, S. (2016), "Sulfate resistance of calcium sulphoaluminate cement", J. Struct. Integr. Maint., 1(3), 131-139. https://doi.org/10.1080/24705314.2016.1211235.
  4. Biricik, H. and Sarier, N. (2014), "Comparative study of the characteristics of nano silica - , silica fume - and fly ash - incorporated cement mortars", Mater. Res., 17(3), 570-582. https://doi.org/10.1590/S1516-14392014005000054.
  5. Dhanya, B.S., Rathnarajan, S., Santhanam, M., Pillai, R.G. and Gettu, R. (2019), "Carbonation and its effect on microstructure of concrete with fly ASH and ground granulated blast furnace slag", Indian Concrete. J., 93(4), 10-21.
  6. Djelloul, O.K., Menadi, B., Wardeh, G. and Kenai, S. (2018), "Performance of self-compacting concrete made with coarse and fine recycled concrete aggregates and ground granulated blast-furnace slag", Adv. Concrete. Constr., 6(2), 103-121. https://doi.org/10.12989/acc.2018.6.2.103.
  7. Ehsani, A., Nili, M. and Shaabani, K. (2017), "Effect of nanosilica on the compressive strength development and water absorption properties of cement paste and concrete containing Fly Ash", KSCE J. Civil. Eng., 21(5), 1854-1865. https://doi.org/10.1007/s12205-016-0853-2.
  8. Farzadnia, N., Abang Ali, A.A., Demirboga, R. and Anwar, M.P. (2013), "Effect of halloysite nanoclay on mechanical properties, thermal behavior and microstructure of cement mortars", Cement Concrete Res., 48, 97-104. https://doi.org/10.1016/j.cemconres.2013.03.005.
  9. Feng, D., Xie, N., Gong, C., Leng, Z., Xiao, H., Li, H. and Shi, X. (2013), "Portland cement paste modified by TiO2 nanoparticles: A microstructure perspective", Ind. Eng. Chem. Res., 52(33), 11575-11582. https://doi.org/10.1021/ie4011595.
  10. Garg, R. and Garg, R. (2020), "Performance evaluation of polypropylene fiber waste reinforced concrete in presence of silica fume", Mater. Today Proc., 43, 809-816. https://doi.org/10.1016/j.matpr.2020.06.482.
  11. Garg, R. and Garg, R. (2021), "Effect of zinc oxide nanoparticles on mechanical properties of silica fume-based cement composites", Mater. Today Proc., 43, 778-783. https://doi.org/10.1016/j.matpr.2020.06.168.
  12. Garg, R., Garg, R., Bansal, M. and Aggarwal, Y. (2020), "Experimental study on strength and microstructure of mortar in presence of micro and nano-silica", Mater. Today Proc., 43, 769-777. https://doi.org/10.1016/j.matpr.2020.06.167.
  13. Ghafari, E., Ghahari, S.A., Feng, Y., Severgnini, F. and Lu, N. (2016), "Effect of Zinc oxide and Al-Zinc oxide nanoparticles on the rheological properties of cement paste", Compos. Part B Eng., 105, 160-166. https://doi.org/10.1016/j.compositesb.2016.08.040.
  14. Ghafoori, N., Batilov, I., Najimi, M. and Sharbaf, M.R. (2018), "Sodium sulfate resistance of mortars containing combined nanosilica and microsilica", J. Mater. Civil. Eng., 30(7), 1-11. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002318.
  15. Gunasekara, C., Sandanayake, M., Zhou, Z., Law, D.W. and Setunge, S. (2020), "Effect of nano-silica addition into high volume fly ash-hydrated lime blended concrete", Constr. Build. Mater., 253, 119205. https://doi.org/10.1016/j.conbuildmat.2020.119205.
  16. Hakamy, A. (2020), " Effect of CaCO3 nanoparticles on the microstructure and fracture toughness of ceramic nanocomposites", J. Taibah Univ. Sci., 14(1), 1201-1207. https://doi.org/10.1080/16583655.2020.1809840.
  17. Haruehansapong, S., Pulngern, T. and Chucheepsakul, S. (2014), "Effect of the particle size of nanosilica on the compressive strength and the optimum replacement content of cement mortar containing nano-SiO2", Constr. Build. Mater., 50, 471-477. https://doi.org/10.1016/j.conbuildmat.2013.10.002.
  18. Heikal, M., Abd El Aleem, S. and Morsi, W.M. (2013), "Characteristics of blended cements containing nano-silica", HBRC J., 9(3), 243-255. https://doi.org/10.1016/j.hbrcj.2013.09.001.
  19. Heikal, M., El-Didamony, H., Sokkary, T.M.M. and Ahmed, I.A.A. (2013), "Behavior of composite cement pastes containing microsilica and fly ash at elevated temperature", Constr. Build. Mater., 38, 1180-1190. https://doi.org/10.1016/j.conbuildmat.2012.09.069.
  20. Horszczaruk, E., Aleksandrzak, M., Cendrowski, K., Jedrzejewski, R., Baranowska, J. and Mijowska, E. (2020), "Mechanical properties cement based composites modified with nanoFe3O4/SiO2", Constr. Build. Mater., 251, 5-10. https://doi.org/10.1016/j.conbuildmat.2020.118945.
  21. Horszczaruk, E., Mijowska, E., Cendrowski, K., Mijowska, S. and Sikora, P. (2014), "Effect of incorporation route on dispersion of mesoporous silica nanospheres in cement mortar", Constr. Build. Mater., 66, 418-421. https://doi.org/10.1016/j.conbuildmat.2014.05.061.
  22. Hospodarova, V., Stevulova, N., Briancin, J. and Kostelanska, K. (2018), "Investigation of waste paper cellulosic fibers utilization into cement based building materials", Buildings, 8(3), 43. https://doi.org/10.3390/buildings8030043.
  23. Hosseini, P., Abolhasani, M., Mirzaei, F., Kouhi Anbaran, M.R., Khaksari, Y. and Famili, H. (2018), "Influence of two types of nanosilica hydrosols on short-term properties of sustainable white portland cement mortar", J. Mater. Civil. Eng., 30(2), 1-11. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002152.
  24. Hosseinpourpia, R., Varshoee, A., Soltani, M., Hosseini, P. and Ziaei Tabari, H. (2012), "Production of waste bio-fiber cement-based composites reinforced with nano-SiO2 particles as a substitute for asbestos cement composites", Constr. Build. Mater., 31, 105-111. https://doi.org/10.1016/j.conbuildmat.2011.12.102.
  25. Hou, P., Kawashima, S., Kong, D., Corr, D.J., Qian, J. and Shah, S.P. (2013), "Modification effects of colloidal nanoSiO2 on cement hydration and its gel property", Compos. Part B Eng., 45(1), 440-448. https://doi.org/10.1016/j.compositesb.2012.05.056.
  26. Imam, A., Kumar, V. and Srivastava, V. (2018), "Review study towards effect of Silica Fume on the fresh and hardened properties of concrete", Adv. Concrete Constr., 6(2), 145-157. https://doi.org/10.12989/acc.2018.6.2.145.
  27. Jena, T. and Panda, K.C. (2018), "Mechanical and durability properties of marine concrete using fly ash and silpozz", Adv. Concrete Constr., 6(1), 47-68. https://doi.org/10.12989/acc.2018.6.1.047.
  28. Jo, B.W., Kim, C.H., Tae, G. h. and Park, J.B. (2007), "Characteristics of cement mortar with nano-SiO2 particles", Constr. Build. Mater., 21(6), 1351-1355. https://doi.org/10.1016/j.conbuildmat.2005.12.020.
  29. Jo, B.Wan, Chakraborty, S., Lee, S.T. and Lee, Y.S. (2019), "Durability study of silica fume-mortar exposed to the combined sulfate and chloride-rich solution", KSCE J. Civil. Eng., 23(1), 356-366. https://doi.org/10.1007/s12205-018-5809-2.
  30. Karunarathne, V.K., Paul, S.C. and Savija, B. (2019), "Development of nano-SiO2 and bentonite-based mortars for corrosion protection of reinforcing steel", Materials, 12(16), 2622. https://doi.org/10.3390/ma12162622.
  31. Khurram, N., Khan, K., Saleem, M.U., Amin, M.N. and Akmal, U. (2018), "Effect of elevated temperatures on mortar with naturally occurring volcanic ash and its blend with electric arc furnace slag", Adv. Mater. Sci. Eng., 5324036. https://doi.org/10.1155/2018/5324036.
  32. Kim, M.J., Kim, K.B. and Ann, K.Y. (2016), "The influence of C3A content in cement on the chloride transport", Adv. Mater. Sci. Eng., 5962821. https://doi.org/10.1155/2016/5962821.
  33. Kong, D., Du, X., Wei, S., Zhang, H., Yang, Y. and Shah, S.P. (2012), "Influence of nano-silica agglomeration on microstructure and properties of the hardened cement-based materials", Constr. Build. Mater., 37, 707-715. https://doi.org/10.1016/j.conbuildmat.2012.08.006.
  34. Kontoleontos, F., Tsakiridis, P.E., Marinos, A., Kaloidas, V. and Katsioti, M. (2012), "Influence of colloidal nanosilica on ultrafine cement hydration: Physicochemical and microstructural characterization", Constr. Build. Mater., 35, 347-360. https://doi.org/10.1016/j.conbuildmat.2012.04.022.
  35. Kooshkaki, A. and Eskandari-Naddaf, H. (2019), "Effect of porosity on predicting compressive and flexural strength of cement mortar containing micro and nano-silica by multi-objective ANN modeling", Constr. Build. Mater., 212, 176-191. https://doi.org/10.1016/j.conbuildmat.2019.03.243.
  36. Li, H., Xiao, H.G., Yuan, J. and Ou, J. (2004), "Microstructure of cement mortar with nano-particles", Compos. Part B Eng., 35(2), 185-189. https://doi.org/10.1016/S1359-8368(03)00052-0.
  37. Li, L.G., Huang, Z.H., Zhu, J., Kwan, A.K.H. and Chen, H.Y. (2017a), "Synergistic effects of micro-silica and nano-silica on strength and microstructure of mortar", Constr. Build. Mater., 140, 229-238. https://doi.org/10.1016/j.conbuildmat.2017.02.115.
  38. Li, L.G., Zhu, J., Huang, Z.H., Kwan, A.K.H. and Li, L.J. (2017b), "Combined effects of micro-silica and nano-silica on durability of mortar", Constr. Build. Mater., 157, 337-347. https://doi.org/10.1016/j.conbuildmat.2017.09.105.
  39. Li, L.G., Zheng, J.Y., Ng, P.L., Zhu, J. and Kwan, A.K.H. (2019), "Cementing efficiencies and synergistic roles of silica fume and nano-silica in sulphate and chloride resistance of concrete", Constr. Build. Mater., 223, 965-975. https://doi.org/10.1016/j.conbuildmat.2019.07.241.
  40. Lim, S. and Mondal, P. (2015), "Effects of incorporating nanosilica on carbonation of cement paste", J. Mater. Sci., 50(10), 3531-3540. https://doi.org/10.1007/s10853-015-8910-7.
  41. Liu, H., Zhang, Y., Tong, R., Zhu, Z. and Lv, Y. (2020), "Effect of nanosilica on impermeability of cement-fly ash system", Adv. Civil. Eng., 1243074. https://doi.org/10.1155/2020/1243074.
  42. Lothenbach, B., Le Saout, G., Ben Haha, M., Figi, R. and Wieland, E. (2012), "Hydration of a low-alkali CEM III/B-SiO2 cement (LAC)", Cement Concrete Res., 42(2), 410-423. https://doi.org/10.1016/j.cemconres.2011.11.008.
  43. Machner, A., Zajac, M., Ben Haha, M., Kjellsen, K.O., Geiker, M.R. and De Weerdt, K. (2018), "Stability of the hydrate phase assemblage in Portland composite cements containing dolomite and metakaolin after leaching, carbonation, and chloride exposure", Cement Concrete Compos., 89, 89-106. https://doi.org/10.1016/j.cemconcomp.2018.02.013.
  44. Maes, M. and De Belie, N. (2014), "Resistance of concrete and mortar against combined attack of chloride and sodium sulphate", Cement Concrete. Compos., 53, 59-72. https://doi.org/10.1016/j.cemconcomp.2014.06.013.
  45. Mohamed, A.M. (2016), "Influence of nano materials on flexural behavior and compressive strength of concrete", HBRC J., 12(2), 212-225. https://doi.org/10.1016/j.hbrcj.2014.11.006.
  46. Mohammed, B.S., Liew, M.S., Alaloul, W.S., Khed, V.C., Hoong, C.Y. and Adamu, M. (2018), "Properties of nano-silica modified pervious concrete", Case Stud. Constr. Mater., 8, 409-422. https://doi.org/10.1016/j.cscm.2018.03.009.
  47. Mohsen, M.O., Al Ansari, M.S., Taha, R., Al Nuaimi, N. and Taqa, A.A. (2019), "Carbon nanotube effect on the ductility, flexural strength, and permeability of concrete", J. Nanomater., 6490984. https://doi.org/10.1155/2019/6490984.
  48. Morsy, M.S., Al-Salloum, Y., Almusallam, T. and Abbas, H. (2014), "Effect of nano-metakaolin addition on the hydration characteristics of fly ash blended cement mortar", J. Therm. Anal. Calorim., 116(2), 845-852. https://doi.org/10.1007/s10973-013-3512-6.
  49. Mustakim, S.M., Das, S.K., Mishra, J., Aftab, A., Alomayri, T.S., Assaedi, H.S. and Kaze, C.R. (2020), "Improvement in fresh, mechanical and microstructural properties of fly ash-blast furnace slag based geopolymer concrete by addition of nano and micro silica", Silicon, 13(8), 2415-2428. https://doi.org/10.1007/s12633-020-00593-0.
  50. Niewiadomski, P., Stefaniuk, D. and Hola, J. (2017), "Microstructural analysis of self-compacting concrete modified with the addition of nanoparticles", Procedia Eng., 172, 776-783. https://doi.org/10.1016/j.proeng.2017.02.122.
  51. Nochaiya, T., Sekine, Y., Choopun, S. and Chaipanich, A. (2015), "Microstructure, characterizations, functionality and compressive strength of cement-based materials using zinc oxide nanoparticles as an additive", J. Alloys Compd., 630, 1-10. https://doi.org/10.1016/j.jallcom.2014.11.043.
  52. Oltulu, M. and Sahin, R. (2011), "Single and combined effects of nano-SiO2, nano-Al2O3 and nano-Fe2O3 powders on compressive strength and capillary permeability of cement mortar containing silica fume", Mater. Sci. Eng. A, 528(22-23), 7012-7019. https://doi.org/10.1016/j.msea.2011.05.054.
  53. Oltulu, M. and Sahin, R. (2013), "Effect of nano-SiO2, nano-Al2O3 and nano-Fe2O3 powders on compressive strengths and capillary water absorption of cement mortar containing fly ash: A comparative study", Energy Build., 58, 292-301. https://doi.org/10.1016/j.enbuild.2012.12.014.
  54. Qing, Y., Zenan, Z., Deyu, K. and Rongshen, C. (2007), "Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume", Constr. Build. Mater., 21(3), 539-545. https://doi.org/10.1016/j.conbuildmat.2005.09.001.
  55. Ramesh Kumar, G.B., Bhardwaj, A. and Sharma, U.K. (2018), "Cavitation resistance of concrete containing different material properties", Adv. Concrete Constr., 6(1), 15-28. https://doi.org/10.12989/acc.2018.6.1.015.
  56. Rodriguez, E.D., Bernal, S.A., Provis, J.L., Paya, J., Monzo, J.M. and Borrachero, M.V. (2013), "Effect of nanosilica-based activators on the performance of an alkali-activated fly ash binder", Cement Concrete Compos., 35(1), 1-11. https://doi.org/10.1016/j.cemconcomp.2012.08.025.
  57. Saleh, N.J., Ibrahim, R.I. and Salman, A.D. (2015), "Characterization of nano-silica prepared from local silica sand and its application in cement mortar using optimization technique", Adv. Powder Technol., 26(4), 1123-1133. https://doi.org/10.1016/j.apt.2015.05.008.
  58. Seifan, M., Mendoza, S. and Berenjian, A. (2020), "Mechanical properties and durability performance of fly ash based mortar containing nano- and micro-silica additives", Constr. Build. Mater., 252, 119121. https://doi.org/10.1016/j.conbuildmat.2020.119121.
  59. Senff, L., Hotza, D. and Labrincha, J. (2011), "Effect of diatomite addition on fresh and hardened properties of mortars investigated through mixture experiments", Adv. Appl. Ceram., 110(3), 142-150. https://doi.org/10.1179/1743676110Y.0000000009.
  60. Senff, L., Hotza, D., Repette, W.L., Ferreira, V.M. and Labrincha, J. (2009), "Influence of added nanosilica and/or silica fume on fresh and hardened properties of mortars and cement pastes", Adv. Appl. Ceram., 108(7), 418-428. https://doi.org/10.1179/174367609X422108.
  61. Senff, L., Hotza, D., Repette, W.L., Ferreira, V.M. and Labrincha, J.A. (2010), "Effect of nanosilica and microsilica on microstructure and hardened properties of cement pastes and mortars", Adv. Appl. Ceram., 109(2), 104-110. https://doi.org/10.1179/174367509X12502621261659.
  62. Shafiq, N., Kumar, R., Zahid, M. and Tufail, R.F. (2019), "Effects of modified metakaolin using nano-silica on the mechanical properties and durability of concrete", Materials, 12(14), 1-22. https://doi.org/10.3390/ma12142291.
  63. Shaikh, F.U.A., Supit, S.W.M. and Sarker, P.K. (2014), "A study on the effect of nano silica on compressive strength of high volume fly ash mortars and concretes", Mater. Des., 60, 433-442. https://doi.org/10.1016/j.matdes.2014.04.025.
  64. Sharkawi, A.M., Abd-Elaty, M.A. and Khalifa, O.H. (2018), "Synergistic influence of micro-nano silica mixture on durability performance of cementious materials", Constr. Build. Mater., 164, 579-588. https://doi.org/10.1016/j.conbuildmat.2018.01.013.
  65. Sharma, U., Singh, L.P., Zhan, B. and Poon, C.S. (2019), "Effect of particle size of nanosilica on microstructure of C-S-H and its impact on mechanical strength", Cement Concrete Compos., 97, 312-321. https://doi.org/10.1016/j.cemconcomp.2019.01.007.
  66. Siang Ng, D., Paul, S.C., Anggraini, V., Kong, S.Y., Qureshi, T.S., Rodriguez, C.R., Liu, Q.F. and Savija, B. (2020), "Influence of SiO2, TiO2 and Fe2O3 nanoparticles on the properties of fly ash blended cement mortars", Constr. Build. Mater., 258, 119627. https://doi.org/10.1016/j.conbuildmat.2020.119627.
  67. Singh, L.P., Bhattacharyya, S.K., Singh, P. and Ahalawat, S. (2012), "Granulometric synthesis and characterisation of dispersed nanosilica powder and its application in cementitious system", Adv. Appl. Ceram., 111(4), 220-227. https://doi.org/10.1179/1743676112Y.0000000002.
  68. Singh, L.P., Goel, A., Bhattachharyya, S.K., Ahalawat, S., Sharma, U. and Mishra, G. (2015), "Effect of morphology and dispersibility of silica nanoparticles on the mechanical behaviour of cement mortar", Int. J. Concrete. Struct. Mater., 9(2), 207-217. https://doi.org/10.1007/s40069-015-0099-2.
  69. Stefanidou, M. and Papayianni, I. (2012), "Influence of nano-SiO2 on the Portland cement pastes", Compos. Part B Eng., 43(6), 2706-2710. https://doi.org/10.1016/j.compositesb.2011.12.015.
  70. Stynoski, P., Mondal, P. and Marsh, C. (2015), "Effects of silica additives on fracture properties of carbon nanotube and carbon fiber reinforced Portland cement mortar", Cement Concrete Compos., 55, 232-240. https://doi.org/10.1016/j.cemconcomp.2014.08.005.
  71. Supit, S.W. and Shaikh, F.U. (2014), "Effect of nano-CaCO3 on compressive strength development of high volume fly ash mortars and concretes", J. Adv. Concrete. Technol., 12(6), 178-186. https://doi.org/10.3151/jact.12.178.
  72. Wang, L., Zheng, D., Zhang, S., Cui, H. and Li, D. (2016), "Effect of nano-SiO2 on the hydration and microstructure of Portland cement", Nanomaterials, 6(12), 241. https://doi.org/10.3390/nano6120241.
  73. Wongkeo, W., Thongsanitgarn, P., Chindaprasirt, P. and Chaipanich, A. (2013), "Thermogravimetry of ternary cement blends", J. Therm. Anal. Calorim., 113(3), 1079-1090. https://doi.org/10.1007/s10973-013-3017-3.
  74. Xue, C., Qiao, H., Cao, H., Feng, Q. and Li, Q. (2021), "Analysis on the strength of cement mortar mixed with construction waste brick powder", Adv. Civil. Eng., 2021, 1-10. https://doi.org/10.1155/2021/8871280.
  75. Yang, H., Che, Y. and Leng, F. (2018), "High volume fly ash mortar containing nano-calcium carbonate as a sustainable cementitious material: Microstructure and strength development", Sci. Rep., 8(1), 1-11. https://doi.org/10.1038/s41598-018-34851-4.
  76. Ylmen, R., Jaglid, U., Steenari, B.-M. and Panas, I. (2009), "Early hydration and setting of Portland cement monitored by IR, SEM and Vicat techniques", Cement Concrete Res., 39(5), 433-439. https://doi.org/10.1016/j.cemconres.2009.01.017.
  77. Younis, K.H. and Mustafa, S.M. (2018), "Feasibility of using nanoparticles of SiO2 to improve the performance of recycled aggregate concrete", Adv. Mater. Sci. Eng., 1512830. https://doi.org/10.1155/2018/1512830.
  78. Yu, J., Zhang, M., Li, G., Meng, J. and Leung, C.K.Y. (2020), "Using nano-silica to improve mechanical and fracture properties of fiber-reinforced high-volume fly ash cement mortar", Constr. Build. Mater., 239, 117853. https://doi.org/10.1016/j.conbuildmat.2019.117853.
  79. Yue, Y., Zhou, Y., Xing, F., Gong, G., Hu, B. and Guo, M. (2020), "An industrial applicable method to improve the properties of recycled aggregate concrete by incorporating nano-silica and micro-CaCO3", J. Clean. Prod., 259, 120920. https://doi.org/10.1016/j.jclepro.2020.120920.
  80. Zapata, L.E., Portela, G., Suarez, O.M. and Carrasquillo, O. (2013), "Rheological performance and compressive strength of superplasticized cementitious mixtures with micro/nano-SiO2 additions", Constr. Build. Mater., 41, 708-716. https://doi.org/10.1016/j.conbuildmat.2012.12.025.