DOI QR코드

DOI QR Code

Computational modeling for nonlinear magneto-electro-elastic responses of smart multi-phase symmetric system

  • Maalla, Allam (School of Engineering, Guangzhou College of Technology and business) ;
  • Song, Jun (School of Civil Engineering, Shandong Jiaotong University)
  • 투고 : 2021.01.14
  • 심사 : 2021.08.27
  • 발행 : 2021.09.25

초록

This paper investigates impact of thickness stretching phenomenon on the scale-dependent behavior of nano panel in electromagnetic environment in the framework of HOSNDT. Unlike classic theories of shells and plates, the radial displacement is assumed variable along the thickness direction as summation of bending, shear and thickness stretching displacements in which the last term is assumed trigonometrically variable along the thickness direction. Generalized magneto-electro-elastic equations are derived using the virtual work principle. The main novelty of the present paper is application of thickness stretching formulation on the results. The bending results are calculated using analytical method with actuating the nano panel with initial electromagnetic potentials. An extended numerical investigation is presented to examine influence of significant parameters on the static results.

키워드

과제정보

This work was supported by Guangzhou City Philosophy and Social Science Planning Project "Guangzhou Speeds Up the Development of Artificial Intelligence and Digital Economy Pilot Zone Construction research" (Project No. 2021GZGJ24). This work was supported by National Natural Science Foundation (51508261), the Doctoral Program of Shandong Jiaotong University.

참고문헌

  1. Adim, B. and Daouadji, T.H. (2016), "Effects of thickness stretching in FGM plates using a quasi-3D higher order shear deformation theory", Adv. Mater. Res., 5(4), 223-244. http://doi.org/10.12989/amr.2016.5.4.223.
  2. Alijani, F. and Amabili, M. (2014a), "Effect of thickness deformation on large-amplitude vibrations of functionally graded rectangular plates", Compos. Struct., 113, 89-107. https://doi.org/10.1016/j.compstruct.2014.03.006.
  3. Alijani, F. and Amabili, M. (2014b), "Non-linear static bending and forced vibrations of rectangular plates retaining non-linearities in rotations and thickness deformation", Int. J. Non-Linear Mech., 67, 394-404. https://doi.org/10.1016/j.ijnronlinmec.2014.10.003.
  4. Amabili, M. (2014), "A non-linear higher-order thickness stretching and shear deformation theory for large-amplitude vibrations of laminated doubly curved shells", Int. J. Non-Linear Mech., 58, 57-75. https://doi.org/10.1016/j.ijnonlinmec.2013.08.006.
  5. Amabili, M. (2015), "Non-linearities in rotation and thickness deformation in a new third-order thickness deformation theory for static and dynamic analysis of isotropic and laminated doubly curved shells", Int. J. Non-Linear Mech., 69, 109-128. https://doi.org/10.1016/j.ijnonlinmec.2014.11.026.
  6. Amabili, M. and Reddy, J.N. (2020), "The nonlinear, third-order thickness and shear deformation theory for statics and dynamics of laminated composite shells", Compos. Struct., 244, 112265. https://doi.org/10.1016/j.compstruct.2020.112265.
  7. Arefi, M., Rahimi, G.H. and Khoshgoftar, M.J. (2011), "Optimized design of a cylinder under mechanical, magnetic and thermal loads as a sensor or actuator using a functionally graded piezomagnetic material", Int. J. Phys. Sci., 6(27), 6315-6322. https://doi.org/10.5897/IJPS10.597.
  8. Arefi, M. and Rahimi, G.H. (2011), "Thermo elastic analysis of a functionally graded cylinder under internal pressure using first order shear deformation theory", Sci. Res. Essays, 5(12), 1442-1454. https://doi.org/10.5897/SRE.9000953.
  9. Arefi, M. and Rahimi, G.H. (2012a), "Studying the nonlinear behavior of the functionally graded annular plates with piezoelectric layers as a sensor and actuator under normal pressure", Smart. Struct. Syst. 9(2), 127-143. https://doi.org/10.12989/sss.2011.8.5.433.
  10. Arefi, M. and Rahimi, G.H. (2012b), "Comprehensive thermoelastic analysis of a functionally graded cylinder with different boundary conditions under internal pressure using first order shear deformation theory", Mechanika, 18(1), 5-13. https://doi.org/10.5755/j01.mech.18.1.1273.
  11. Arefi, M. and Rahimi, G.H. (2012c), "Non linear analysis of a functionally graded square plate with two smart layers as sensor and actuator under normal pressure", Smart. Struct. Syst., 8(5), 433-447. https://doi.org/10.12989/sss.2011.8.5.433.
  12. Arefi, M., Rahimi, G.H. and Khoshgoftar, M.J. (2012), "Exact solution of a thick walled functionally graded piezoelectric cylinder under mechanical, thermal and electrical loads in the magnetic field", Smart. Struct. Syst., 9(5), 427-439. https://doi.org/10.12989/sss.2012.9.5.427.
  13. Arefi, M. (2013), "Nonlinear thermoelastic analysis of thick-walled functionally graded piezoelectric cylinder", Acta Mechanica, 224(11), 2771-2783. https://doi.org/10.1007/s00707-013-0888-0.
  14. Arefi, M. (2014), "A complete set of equations for piezomagnetoelastic analysis of a functionally graded thick shell of revolution", Lat. Amer. J. Solids. Struct., 11, 2073-2092. https://doi.org/10.1590/S1679-78252014001100009.
  15. Arefi, M., Karroubi, R. and Irani-Rahaghi, M. (2016a), "Free vibration analysis of functionally graded laminated sandwich cylindrical shells integrated with piezoelectric layer", Appl. Math. Mech. 37(7), 821-834. https://doi.org/10.1007/s10483-016-2098-9.
  16. Arefi, M., Karroubi, R. and Irani-Rahaghi, M. (2016b), "Free vibration analysis of functionally graded laminated sandwich cylindrical shells integrated with piezoelectric layer", Appl. Math. Mech., 37(7), 821-834. https://doi.org/10.1007/s10483-016-2098-9.
  17. Arefi, M. and Zenkour, A.M. (2017), "Transient analysis of a three-layer microbeam subjected to electric potential", Int. J. Smart. Nano. Mater., 8(1), 20-40. https://doi.org/10.1080/19475411.2017.1292967.
  18. Arefi, M. and Zenkour, A.M. (2018a), "Size-dependent electro-elastic analysis of a sandwich microbeam based on higher-order sinusoidal shear deformation theory and strain gradient theory", J. Intel. Mater. Syst. Struct., 29 (7), 1394-1406. https://doi.org/10.1177/1045389X17733333.
  19. Arefi, M. and Zenkour, A.M. (2018b), "Size-dependent electro-elastic analysis of a sandwich microbeam based on higher-order sinusoidal shear deformation theory and strain gradient theory", J. Intel. Mater. Syst. Struct., 29(7), 1394-1406. https://doi.org/10.1177/1045389X17733333.
  20. Arefi, M. and Rabczuk, T. (2019), "A nonlocal higher order shear deformation theory for electro-elastic analysis of a piezoelectric doubly curved nano shell", Compos. B: Eng., 168(1), 496-510. https://doi.org/10.1016/j.compositesb.2019.03.065.
  21. Asrari, R., Ebrahimi, F. and Kheirikhah, M.M. (2020), "On scale-dependent stability analysis of functionally graded magneto-electro-thermo-elastic cylindrical nanoshells", Struct. Eng. Mech., 75(6), 659-674. https://doi.org/10.12989/sem.2020.75.6.659.
  22. Asghar, S., Naeem, M.N., Hussain, M. and Tounsi, A. (2020), "Nonlocal vibration of DWCNTs based on Flugge shell model using wave propagation approach", Steel Compos. Struct., 34(4), 599-613. https://doi.org/10.12989/scs.2020.34.4.599.
  23. Asiri, S.A., Akbas, S.D. and Eltaher, M.A. (2020), "Damped dynamic responses of a layered functionally graded thick beam under a pulse load", Struct. Eng. Mech., 75(6), 713-722. https://doi.org/10.12989/sem.2020.75.6.713.
  24. Alibeigloo, A. and Liew, K.M. (2014), "Free vibration analysis of sandwich cylindrical panel with functionally graded core using three-dimensional theory of elasticity", Compos. Struct., 113, 23-30. https://doi.org/10.1016/j.compstruct.2014.03.004.
  25. Atmane, H.A. Tounsi, A. and Bernard, F. (2017), "Effect of thickness stretching and porosity on mechanical response of a functionally graded beams resting on elastic foundations", Int. J. Mech. Mater. Design., 13, 71-84. https://doi.org/10.1007/s10999-015-9318-x.
  26. Barati, M.R. and Zenkour, A.M. (2019), "Vibration analysis of functionally graded graphene platelet reinforced cylindrical shells with different porosity distribution", Mech. Adv. Mater. Struct., 26(18), 1580-1588. https://doi.org/10.1080/15376494.2018.1444235.
  27. Belarbi, M. Tati, A. and Khechai, A. (2019), "Effect of thickness stretching on the natural frequencies of laminate-faced sandwich plates using a new Layerwise model", J. Build. Mater. Struct. 6, 88-96. https://doi.org/10.5281/zenodo.3352310.
  28. Bellal, M., Hebali, H., Heireche, H., Bousahla, A.A., Tounsi, A., Bourada, F., Mahmoud, S.R., Bedia, E.A. and Tounsi, A. (2020), "Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model", Steel Compos. Struct., 34(5), 643-655. https://doi.org/10.12989/scs.2020.34.5.643.
  29. Bodaghi, M. and Shakeri, M. (2012), "An analytical approach for free vibration and transient response of functionally graded piezoelectric cylindrical panels subjected to impulsive loads", Compos. Struct. 94, 1721-1735. https://doi.org/10.1016/j.compstruct.2012.01.009.
  30. Carrera, E., Brischetto, S., Cinefra, M. and Soave, M. (2011), "Effects of thickness stretching in functionally graded plates and shells", Compos. Part B. Eng., 42(2), 123-133. https://doi.org/10.1016/j.compositesb.2010.10.005.
  31. Chen, R., Cheng, Y., Wang, P., Wang, Q., Wan, S., Huang, S. and Wang, Y. (2021a). "Enhanced removal of Co(II) and Ni(II) from high-salinity aqueous solution using reductive self-assembly of three-dimensional magnetic fungal hyphal/graphene oxide nanofibers". Sci. Total Environ., 756, 143871. https://doi.org/10.1016/j.scitotenv.2020.143871.
  32. Chen, R., Cheng, Y., Wang, P., Wang, Y., Wang, Q., Yang, Z. and Su, C. (2021b). "Facile synthesis of a sandwiched Ti3C2Tx MXene/nZVI/fungal hypha nanofiber hybrid membrane for enhanced removal of Be(II) from Be(NH2)2 complexing solutions", Chem. Eng. J., 421, 129682. https://doi.org/10.1016/j.cej.2021.129682.
  33. Elmascri, S., Bessaim, A., Taleb, O. Houari, M.S.A., Mohamed, S. Bernard, F. and Tounsi, A. (2020), "A novel hyperbolic plate theory including stretching effect for free vibration analysis of advanced composite plates in thermal environments, Struct. Eng. Mech., 75(2), 193-209, http://doi.org/10.12989/sem.2020.75.2.193.
  34. Farrokhi Nia, A., Badnava, S., Hamouda, A.M.S., Mirjavadi, S.S. and Forsat, M. (2020), "Nonlocal strain gradient effects on forced vibrations of porous FG cylindrical nanoshells", Adv. Nano. Res., 8(2), 149-156. http://doi.org/10.12989/anr.2020.8.2.149.
  35. Feng, S., Zuo, C., Zhang, L., Yin, W. and Chen, Q. (2021). "Generalized framework for non-sinusoidal fringe analysis using deep learning", Photonic Res., 9(6), 1084. https://doi.org/10.1364/PRJ.420944.
  36. Gholami, Y., Ansari, R., Gholami, R. and Rouhi, H. (2020), "Nonlinear forced vibration analysis of FG cylindrical nanopanels based on Mindlin's strain gradient theory and 3D elasticity", Int. J. Nonlinear. Sci. Num. Sim., 21(6), 523-537. https://doi.org/10.1515/ijnsns-2018-0333.
  37. Gupta, A., Talha, M. and Seemann, W. (2018), "Free vibration and flexural response of functionally graded plates resting on Winkler-Pasternak elastic foundations using nonpolynomial higher-order shear and normal deformation theory", Mech. Adv. Mater. Struct., 25(6), 523-538. https://doi.org/10.1080/15376494.2017.1285459.
  38. Ganapathi, M., Anirudh, B., Anant, C. and Polit, O. (2019), "Dynamic characteristics of functionally graded graphene reinforced porous nanocomposite curved beams based on trigonometric shear deformation theory with thickness stretch effect", Mech. Adv. Mater. Struct., 28(7), 741-752. https://doi.org/10.1080/15376494.2019.1601310.
  39. Guo, F., Wu, S., Liu, J., Wu, Z., Fu, S. and Ding, S. (2021). "A time-domain stepwise fatigue assessment to bridge small-scale fracture mechanics with large-scale system dynamics for high-speed maglev lightweight bogies". Eng. Fract. Mech., 248, 107711. https://doi.org/10.1016/j.engfracmech.2021.107711.
  40. Hashemi, R., Mirzaei, M. and Adlparvar, M.R. (2021), "On thermally induced instability of FG-CNTRC cylindrical panels", Adv. Nano. Res., 10(1), 43-57. http://doi.org/10.12989/anr.2021.10.1.043.
  41. Kabir, H.R.H. and Askar, H. (2005), "Free vibration response of cylindrical panels with higher order shear deformation theory", Int. J. Struct. Stab. Dyn., 5(3), 409-434. https://doi.org/10.1142/S0219455405001660.
  42. Khoshgoftar, M.J., Rahimi, G.H. and Arefi, M. (2013), "Exact solution of functionally graded thick cylinder with finite length under longitudinally non-uniform pressure", Mech. Res. Com. 51, 61-66. https://doi.org/10.1016/j.mechrescom.2013.05.001.
  43. Kheroubi, B., Benzair, A., Tounsi, A. and Semmah, A. (2016), "A new refined nonlocal beam theory accounting for effect of thickness stretching in nanoscale beams", Adv. Nano. Res., 4(4), 251-264. http://doi.org/10.12989/anr.2016.4.4.251.
  44. Li, X., Dong, Z., Yu, P., Wang, L., Niu, X., Yamaguchi, H. and Li, D. (2021), "Effect of self-assembly on fluorescence in magnetic multiphase flows and its application on the novel detection for COVID-19". Phys. Fluid., 33(4). https://doi.org/10.1063/5.0048123.
  45. Merzouki, T., Ganapathi, M. and Polit, O. (2019), "A nonlocal higher-order curved beam finite model including thickness stretching effect for bending analysis of curved nanobeams", Mech. Adv. Mater. Struct., 26(7), 614-630. https://doi.org/10.1080/15376494.2017.1410903.
  46. Mohammadimehr, M., Rostami, R. and Arefi, M. (2016), "Electro-elastic analysis of a sandwich thick plate considering FG core and composite piezoelectric layers on Pasternak foundation using TSDT", Steel. Compos. Struct., 20(3), 513-543. http://doi.org/10.12989/scs.2016.20.3.513.
  47. Mohamed Ali, J.S., Alsubari, S. and Aminand, Y. (2016), "Hygro-thermoelastic analysis of orthotropic cylindrical shells", Lat. Am. J. Solids Struct., 13, 573-589. https://doi.org/10.1590/1679-78252249.
  48. Ni, Z., Cao, X., Wang, X., Zhou, S., Zhang, C., Xu, B. and Ni, Y. (2021), "Facile synthesis of copper(I) oxide nanochains and the photo-thermal conversion performance of its nanofluids", Coatings, 11, 749. https://doi.org/10.3390/coatings11070749.
  49. Rezaiee-Pajand, M., Masoodi, A.R. and Arabi, E. (2018), "On the shell thickness-stretching effects using seven-parameter triangular element", Eur. J. Comput. Mech., 27(2), 163-185. https://doi.org/10.1080/17797179.2018.1484208.
  50. Rivera, M.G., Reddy, J.N. and Amabili, M. (2016), "A new twelve-parameter spectral/hp shell finite element for large deformation analysis of composite shells", Compos. Struct., 151, 183-196. https://doi.org/10.1016/j.compstruct.2016.02.068.
  51. Rivera, M.G. Reddy, J.N. and Amabili, M. (2020), "A continuum eight-parameter shell finite element for large deformation analysis", Mech. Adv. Mater. Struct., 27(7), 551-560. https://doi.org/10.1080/15376494.2018.1484531.
  52. Shariyat, M. and Alipour, M.M. (2017), "Analytical bending and stress analysis of variable thickness FGM auxetic conical/cylindrical shells with general tractions", Lat. Am. J. Solids Struct., 14(5). https://doi.org/10.1590/1679-78253413.
  53. Sayyad, A.S. and Ghugal, Y.M. (2018), "Effect of thickness stretching on the static deformations, natural frequencies, and critical buckling loads of laminated composite and sandwich beams", J. Braz. Soc. Mech. Sci. Eng., 40, 296. https://doi.org/10.1007/s40430-018-1222-5.
  54. Sun, J., Aslani, F., Wei, J. and Wang, X. (2021), "Electromagnetic absorption of copper fiber oriented composite using 3D printing", Construct. Build. Mater., 300, 124026. https://doi.org/10.1016/j.conbuildmat.2021.124026.
  55. Talebizadehsardari, P., Eyvazian, A., Musharavati, F., Babaei Mahani, R. and Sebaey, T.A. (2020), "Elastic wave characteristics of graphene reinforced polymer nanocomposite curved beams including thickness stretching effect", Polymers, 12(10), 2194. https://doi.org/10.3390/polym12102194.
  56. Tounsi, A., Benguediab, S., Houari, M.S.A. and Semmah, A.W. (2013), "A new nonlocal beam theory with thickness stretching effect for nanobeams", Int. J. Nanosci., 12(4), 1350025. https://doi.org/10.1142/S0219581X13500257.
  57. Wang, M., Jiang, C., Zhang, S., Song, X., Tang, Y. and Cheng, H. (2018). "Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage". Nature. Chem., 10(6), 667-672. https://doi.org/10.1038/s41557-018-0045-4.
  58. Xu, X. and Nieto-Vesperinas, M. (2019), "Azimuthal imaginary poynting /momentum density", Phys. Rew. Lett., 123(23), 233902. https://doi.org/10.1103/PhysRevLett.123.233902.
  59. Yang, M., Li, C., Zhang, Y., Jia, D., Zhang, X., Hou, Y. and Wang, J. (2017). "Maximum undeformed equivalent chip thickness for ductile-brittle transition of zirconia ceramics under different lubrication conditions". Int. J. Mach. Tool. Manuf., 122, 55-65. https://doi.org/10.1016/j.ijmachtools.2017.06.003.
  60. Yang, Y., Chen, H., Zou, X., Shi, X., Liu, W., Feng, L. and Chen, Z. (2020). "Flexible carbon-fiber/semimetal bi nanosheet arrays as separable and recyclable plasmonic photocatalysts and photoelectrocatalysts", ACS Appl. Mater. Interface., 12(22), 24845-24854. https://doi.org/10.1021/acsami.0c05695.
  61. Zenkour, A.M. (2016), "Hygrothermal analysis of heterogeneous piezoelectric elastic cylinders", Math. Models. Eng., 2(1), 1-17. https://doi.org/10.21595/mme.2016.17405
  62. Zenkour, A.M. (2018), "Generalized thermoelasticity theories for axisymmetric hollow cylinders under thermal shock with variable thermal conductivity", J. Mole. Eng. Mater., 6(3-4), 1850006. https://doi.org/10.1142/S2251237318500065.
  63. Zenkour, A.M. (2020a), "Thermal-shock problem for a hollow cylinder via a multi-dual-phase-lag theory", J. Therm. Stresses, 43(6), 687-706. https://doi.org/10.1080/01495739.2020.1736966.
  64. Zenkour, A.M. (2020b), "Thermo-diffusion of solid cylinders based upon refined dual-phase-lag models", Multidisc. Model. Mater. Struct., 16(6), 1417-1434. https://doi.org/10.1108/MMMS-12-2019-0213.
  65. Zenkour, A.M. and Kutbi, M.A. (2020), "Thermoelastic interactions in a hollow cylinder due to a continuous heat source without energy dissipation", Mater. Res. Express, 7, 035702. https://doi.org/10.1088/2053-1591/ab7a61.
  66. Zhao, X., Zhu, W. D. and Li, Y.H. (2020a), "Analytical solutions of nonlocal coupled thermoelastic forced vibrations of micro-/nano-beams by means of Green's functions", J. Sound. Vib., 481, 115407. https://doi.org/10.1016/j.jsv.2020.115407.
  67. Zhao, N., Deng, L., Luo, D. and Zhang, P. (2020b), "One-step fabrication of biomass-derived hierarchically porous carbon/MnO nanosheets composites for symmetric hybrid supercapacitor", Appl. Surf. Sci., 526, 146696. https://doi.org/10.1016/j.apsusc.2020.146696.
  68. Zhuo, Z., Wan, Y., Guan, D., Ni, S., Wang, L., Zhang, Z. and Zhang, B.T. (2020), "A loop-based and AGO-incorporated virtual screening model targeting AGO-mediated miRNA-mRNA interactions for drug discovery to rescue bone phenotype in genetically modified mice", Adv. Sci., 7(13), 1903451. https://doi.org/10.1002/advs.201903451.
  69. Zhang, Y., Li, C., Jia, D., Zhang, D. and Zhang, X. (2015), "Experimental evaluation of MoS2 nanoparticles in jet MQL grinding with different types of vegetable oil as base oil", J. Clean. Prod., 87, 930-940. https://doi.org/10.1016/j.jclepro.2014.10.027.
  70. Zhang, K., Huo, Q., Zhou, Y., Wang, H., Li, G., Wang, Y. and Wang, Y. (2019), "Textiles/metal-organic frameworks composites as flexible air filters for efficient particulate matter removal", ACS Appl. Mater. Interface., 11(19), 17368-17374. https://doi.org/10.1021/acsami.9b01734.