DOI QR코드

DOI QR Code

해수에 노출된 슬래그 시멘트의 장기 상변이 열역학 모델링

Thermodynamic Modeling of Long-Term Phase Development of Slag Cement in Seawater

  • 박솔뫼 (부경대학교 토목공학과) ;
  • 서용철 (부경대학교 토목공학과) ;
  • 남광희 (부경대학교 산학협력단) ;
  • 원윤상 (부경대학교 산학협력단)
  • 투고 : 2020.09.10
  • 심사 : 2021.01.21
  • 발행 : 2021.08.01

초록

고로슬래그는 콘크리트의 염소이온침투 저항성능 개선 목적으로 가장 널리 활용되는 혼화재이나, 해수에 노출된 고로슬래그 혼입 콘크리트의 장기거동 및 상변이에 대한 보고는 부족한 실정이다. 본 연구에서는 열역학 모델링을 통해 해수에 노출된 슬래그 시멘트의 장기 상변이를 모사하였다. 모델링 결과 슬래그 혼입은 해수에 노출되었을 때 상변이가 쉽게 일어나지 않는 안정적인 상을 생성시킬 것으로 예측되었다. 해수에 노출되었을 때 ettringite 생성으로 인해 포틀랜드 시멘트 및 슬래그 시멘트에서 모두 팽창이 일어날 것으로 예측되었으나, 슬래그 시멘트에서는 brucite가 덜 생기는 것을 확인하였다. 공극률은 슬래그 혼입 시멘트의 경우 더 높았으나, 염소 흡착능이 높은 알루미네이트 수화물이 슬래그 시멘트에서 더 활발히 생성되는 것을 확인하였다. 따라서 슬래그 혼입을 통해 해양 환경에서 사용되는 콘크리트의 내구성능을 크게 증진시킬 수 있는 것으로 나타났다.

Known to improve resistance to chloride ingress, blast furnace slag is a widely used supplementary cementitious material. However, a detailed characterization of cements blended with slag exposed to seawater remains unavailable. This study employs thermodynamic modeling as a toolkit for assessing the long-term phase evolution of slag cement in seawater. The modeling result shows that slag incorporation leads to the formation of phases that are less prone to structural alteration in seawater. Formation of more ettringite is expected to induce expansion in both plain and blended cements, while brucite is unstable in the blended systems. Despite this, the porosity is expected to increase in the blended cements, and aluminate hydrates with a higher chloride binding capacity are more abundant in the blended cements. The results suggest that the use of slag in concrete improves the durability performance of concrete in marine environments.

키워드

과제정보

This study was supported by the Pukyong National University Development Project Research Fund 2020, and by National Research Foundation of Korea (Grant No. 2018R1D1A1B07047233).

참고문헌

  1. Aldea, C. M., Shah, S. P. and Karr, A. (1999). "Permeability of cracked concrete." Materials and Structures, Vol. 32, pp. 370-376. https://doi.org/10.1007/BF02479629
  2. Boulfiza, M., Sakai, K., Banthia, N. and Yoshida, H. (2003). "Prediction of chloride ions ingress in uncracked and cracked concrete." ACI Materials Journal, Vol. 100, No. 1, pp. 38-48.
  3. De Weerdt, K., Lothenbach, B. and Geiker, M. R. (2019). "Comparing chloride ingress from seawater and NaCl solution in portland cement mortar." Cement and Concrete Research, Vol. 115, pp. 80-89. https://doi.org/10.1016/j.cemconres.2018.09.014
  4. Durdzinski, P. T., Haha, M. B., Bernal, S. A., De Belie, N., Gruyaert, E., Lothenbach, B., Mendez, E. M., Provis, J. L., Scholer, A. and Stabler, C. (2017a). "Outcomes of the RILEM round robin on degree of reaction of slag and fly ash in blended cements." Materials and Structures, Vol. 50, No. 2, pp. 135. https://doi.org/10.1617/s11527-017-1002-1
  5. Durdzinski, P. T., Haha, M. B., Zajac, M. and Scrivener, K. L. (2017b). "Phase assemblage of composite cements." Cement and Concrete Research, Vol. 99, pp. 172-182. https://doi.org/10.1016/j.cemconres.2017.05.009
  6. Escalante, J., Gomez, L., Johal, K., Mendoza, G., Mancha, H. and Mendez, J. (2001). "Reactivity of blast-furnace slag in portland cement blends hydrated under different conditions." Cement and Concrete Research, Vol. 31, No. 10, pp. 1403-1409. https://doi.org/10.1016/S0008-8846(01)00587-7
  7. Helgeson, H. C., Kirkham, D. H. and Flowers, G. C. (1981). "Theoretical prediction of the thermodynamic behavior of aqueous electrolytes by high pressures and temperatures; IV, calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600 degrees C and 5kb." American Journal of Science, Vol. 281, No. 10, pp. 1249-1516. https://doi.org/10.2475/ajs.281.10.1249
  8. Kulik, D. A., Wagner, T., Dmytrieva, S. V., Kosakowski, G., Hingerl, F. F., Chudnenko, K. V. and Berner, U. R. (2013). "GEM-Selektor geochemical modeling package: Revised algorithm and GEMS3K numerical kernel for coupled simulation codes." Computers & Geosciences, Vol. 17, pp. 1-24. https://doi.org/10.1016/0098-3004(91)90077-Q
  9. Lothenbach, B., Kulik, D. A., Matschei, T., Balonis, M., Baquerizo, L., Dilnesa, B., Miron, G. D. and Myers, R. J. (2019). "Cemdata18: A chemical thermodynamic database for hydrated Portland cements and alkali-activated materials." Cement and Concrete Research, Vol. 115, pp. 472-506. https://doi.org/10.1016/j.cemconres.2018.04.018
  10. Mangat, P., Khatib, J. and Molloy, B. (1994). "Microstructure, chloride diffusion and reinforcement corrosion in blended cement paste and concrete." Cement and Concrete Composites, Vol. 16, No. 2, pp. 73-81. https://doi.org/10.1016/0958-9465(94)90002-7
  11. Millero, F. J., Feistel, R., Wright, D. G. and McDougall, T. J. (2008). "The composition of standard seawater and the definition of the reference-composition salinity scale." Deep-Sea Research Part I: Oceanographic Research Papers, Vol. 55, No. 1, pp. 50-72. https://doi.org/10.1016/j.dsr.2007.10.001
  12. Otieno, M., Alexander, M. and Beushausen, H. D. (2010). "Corrosion in cracked and uncracked concrete-influence of crack width, concrete quality and crack reopening." Magazine of Concrete Research, Vol. 62, No. 6, pp. 393-404. https://doi.org/10.1680/macr.2010.62.6.393
  13. Otieno, M., Beushausen, H. and Alexander, M. (2014). "Effect of chemical composition of slag on chloride penetration resistance of concrete." Cement and Concrete Composites, Vol. 46, pp. 56-64. https://doi.org/10.1016/j.cemconcomp.2013.11.003
  14. Park, S. M. (2020). "Simulating the carbonation of calcium sulfoaluminate cement blended with supplementary cementitious materials." Journal of CO2 Utilization, Vol. 41, pp. 101286. https://doi.org/10.1016/j.jcou.2020.101286
  15. Park, S. M., Abate, S. Y. and Kim, H. K. (2020a). "Hydration kinetics modeling of sodium silicate-activated slag: A comparative study." Construction and Building Materials, Vol. 242, pp. 118144. https://doi.org/10.1016/j.conbuildmat.2020.118144
  16. Park, S. M., Park, H. M., Yoon, H. N., Seo, J. H., Yang, C. M., Provis, J. L. and Yang, B. J. (2020b). "Hydration kinetics and products of MgO-activated blast furnace slag." Construction and Building Materials, Vol. 249, pp. 118700. https://doi.org/10.1016/j.conbuildmat.2020.118700
  17. Park, S. M., Yoon, H. N., Seo, J. H., Lee, H. K. and Jang, J. G. (2019). "Structural evolution of binder gel in alkali-activated materials exposed to electrically accelerated leaching conditions." Journal of Hazardous Materials, Vol. 387, pp. 121825. https://doi.org/10.1016/j.jhazmat.2019.121825
  18. Parrot, L. (1984). "Prediction of cement hydration." Proceedings of the British Ceramic Society.
  19. Scott, A. and Alexander, M. (2007). "The influence of binder type, cracking and cover on corrosion rates of steel in chloride-contaminated concrete." Magazine of Concrete Research, Vol. 59, No. 7, pp. 495-505. https://doi.org/10.1680/macr.2007.59.7.495
  20. Shi, Z., Geiker, M. R., Lothenbach, B., De Weerdt, K., Garzon, S. F., Enemark-Rasmussen, K. and Skibsted, J. (2017). "Friedel's salt profiles from thermogravimetric analysis and thermodynamic modelling of Portland cement-based mortars exposed to sodium chloride solution." Cement and Concrete Composites, Vol. 78, pp. 73-83. https://doi.org/10.1016/j.cemconcomp.2017.01.002
  21. Snellings, R., Salze, A. and Scrivener, K. (2014). "Use of X-ray diffraction to quantify amorphous supplementary cementitious materials in anhydrous and hydrated blended cements." Cement and Concrete Research, Vol. 64, pp. 89-98. https://doi.org/10.1016/j.cemconres.2014.06.011
  22. Song, H. W. and Saraswathy, V. (2006). "Studies on the corrosion resistance of reinforced steel in concrete with ground granulated blast-furnace slag-An overview." Journal of Hazardous Materials, Vol. 138, No. 2, pp. 226-233. https://doi.org/10.1016/j.jhazmat.2006.07.022
  23. Wagner, T., Kulik, D. A., Hingerl, F. F. and Dmytrieva, S. V. (2012). "GEM-Selektor geochemical modeling package: TSolMod library and data interface for multicomponent phase models." The Canadian Mineralogist, Vol. 50, No. 5, pp. 1173-1195. https://doi.org/10.3749/canmin.50.5.1173
  24. Yeau, K. Y. and Kim, E. K. (2005). "An experimental study on corrosion resistance of concrete with ground granulate blast-furnace slag." Cement and Concrete Research, Vol. 35, No. 7, pp. 1391-1399. https://doi.org/10.1016/j.cemconres.2004.11.010
  25. Yoon, H. N., Seo, J. H., Kim, S. H., Lee, H. K. and Park, S. M. (2020). "Characterization of blast furnace slag-blended portland cement for immobilization of Co." Cement and Concrete Research, Vol. 134, pp. 106089. https://doi.org/10.1016/j.cemconres.2020.106089