DOI QR코드

DOI QR Code

Strength Characteristics in 3D-printed Concrete with Interlayer Reinforcements

층간 보강재로 보강한 3D 프린팅 콘크리트의 강도 특성

  • Lee, Jung Woo (Korea Institute of Civil Engineering and Building Technology) ;
  • Park, Ji-Hun (Department of Civil Engineering, Kunsan National University) ;
  • Bui, The Quang (Department of Civil Engineering, Kunsan National University) ;
  • Jo, Changbin (Korea Institute of Civil Engineering and Building Technology) ;
  • Yang, In-Hwan (Department of Civil Engineering, Kunsan National University)
  • 이정우 (한국건설기술연구원 구조연구본부) ;
  • 박지훈 (군산대학교 토목공학과) ;
  • 부이광테 (군산대학교 토목공학과) ;
  • 조창빈 (한국건설기술연구원 구조연구본부) ;
  • 양인환 (군산대학교 토목공학과)
  • Received : 2021.09.03
  • Accepted : 2021.09.16
  • Published : 2021.09.30

Abstract

This paper aims to evaluating the interlayer strength of 3D-printed concrete with interlayer reinforcement. According to lap splices, two reinforcement methods were considered. One method did not include lap splices of interlayer reinforcement, but the other method included lap splices with length of 40mm. In addition, two different curing conditions were applied: air curing conditions and water curing conditions. The compressive, splitting tensile, and flexural tensile strengths of 3D-printed concrete specimens were measured in three loading directions with different reinforcement methods and curing conditions. Splitting and flexural tensile strengths decreased considerably when tensile stresses acted over the interlayers of 3D-printed concrete specimens. However, the flexural tensile strength or interlayer bonding strength of the printed specimens increased significantly at the interlayers when the longitudinal interlayer reinforcement penetrated printed layers. Interlayer bonding strength of printed concrete decreased after air curing treatment was applied because interlayers of printed concrete with more pores formed by the air cu ring conditions are more vulnerable to the load.

본 논문은 층간 보강재를 보강한 3D 프린팅 콘크리트의 부착강도를 평가하기 위해 수행되었다. 겹침이음 길이에 따라 두 종류의 층간 보강 방법을 고려하였다. 첫 번째 방법은 층간 보강재의 겹침이음을 하지 않았으며, 두 번째 방법은 40mm의 겹침이음을 고려하였다. 또한, 기건양생 조건과 수중양생 조건의 서로 다른 양생 조건을 고려하였다. 실험 변수를 고려하여 3D 프린팅 콘크리트 시편의 압축강도, 쪼갬인장강도 및 휨인장강도를 세가지 하중 방향에서 측정하였다. 압축강도, 쪼갬인장강도 및 휨인장 강도는 하중방향에 영향을 받았다. 특히 3D 프린팅으로 제작한 콘크리트 시편의 층간 부착면에 인장력이 작용하면 쪼갬인장강도 및 휨인장강도가 크게 감소하였다. 그러나 층간 보강재가 보강된 층의 종방향으로 하중이 가해질 때, 프린팅된 시편의 휨인장강도 또는 부착강도는 크게 증가하였다. 또한 기건양생 조건의 휨인장강도 또는 부착강도는 감소하였으며, 기건 양생 조건에 의해 더 많은 공극의 형성을 유발하여 하중에 더 취약해지는 것으로 나타났다.

Keywords

Acknowledgement

본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었습니다(과제번호 19AUDP-B121595-04).

References

  1. ASTM C109M-07 (2007). Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens), West Conshohocken, PA: ASTM International.
  2. ASTM C496M-04 (2004). Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, West Conshohocken, PA: ASTM International.
  3. ASTM 348-18 (2018). Standard Test Method for Flexural Strength of Hydraulic-Cement Mortars, West Conshohocken, PA: ASTM International.
  4. Baduge, S.K., Navaratnam, S., Abu-Zidan, Y. (2021). Improving performance of additive manufactured(3D printed) concrete: a review on material mix design, processing, interlayer bonding, and reinforcing methods, Structures, 29, 1597-1609. https://doi.org/10.1016/j.istruc.2020.12.061
  5. Baz, B., Aouad, G., Khalil, N., Remond, S. (2021). Inter-layer reinforcement of 3D printed concrete elements, Asian Journal of Civil Engineering, 22(2), 341-349. https://doi.org/10.1007/s42107-020-00317-0
  6. Baz, B., Aouad, G., Leblond, P. (2020). Mechanical assessment of concrete - Steel bonding in 3D printed elements, Construction and Building Materials, 256, 119-457.
  7. Bester, F., Heever, M.V.D., Kruger, J., Cho, S., Zijl, G.V. (2020). Steel fiber links in 3D printed concrete, Second RILEM International Conference on Concrete and Digital Fabrication, 398-406.
  8. Cappellari, M., Daubresse, A., Chaouche, M. (2013). Influence of organic thickening admixtures on the rheological properties of mortars: relationship with water-retention, Construction and Building Materials, 38, 950-961. https://doi.org/10.1016/j.conbuildmat.2012.09.055
  9. Ding, T., Xiao, J., Qin, F., Duan, Z. (2020). Mechanical behavior of 3D printed mortar with recycled sand at early ages, Construction and Building Materials, 248, 118-654.
  10. Hass, L., Bos, F.P., Wolfs, R.J.M., Bos, F.P., Salet, T.A.M. (2020a). Hardened properties of 3D printed concrete: the influence of process parameters on interlayer adhesion, Second RILEM International Conference on Concrete and Digital Fabrication, 119, 132-140.
  11. Hass, L., Bos, F. (2020b). Bending and pull-out tests on a novel screw type reinforcement for extrusion-based 3D printed concrete, Second RILEM International Conference on Concrete and Digital Fabrication, 632-645.
  12. Joh, C., Lee, J., Bui, T.Q., Park, J., Yang, I.H. (2020). Buildability and mechanical properties of 3D printed concrete, Materials, 13(21), 4919. https://doi.org/10.3390/ma13214919
  13. Khayat, K.H. (1998). Viscosity-enhancing admixtures for cement-based materials-an overview, Cement and Concrete Composites, 20(2), 171-188. https://doi.org/10.1016/S0958-9465(98)80006-1
  14. Kruger, J., Plessis, A.D., Zijl, G.V. (2021). An investigation into the porosity of extrusion-based 3D printed concrete, Additive Manufacturing, 37, 101-740.
  15. Lee, H., Kim, J.H.J., Moon, J.H., Kim, W.W., Seo, E.A. (2019). Correlation between pore characteristics and tensile bond strength of additive manufactured mortar using X-ray computed tomography, Construction and Building Materials, 226, 712-720. https://doi.org/10.1016/j.conbuildmat.2019.07.161
  16. Marchment, T., Sanjayan, J. (2020a). Bond properties of reinforcing bar penetrations in 3D concrete printing, Automation in Construction, 120, 103-394.
  17. Marchment, T., Sanjayan, J. (2020b). Mesh reinforcing method for 3D Concrete Printing, Automation in Construction, 109, 102-992.
  18. Ma, G., Li, Z., Wang, L., Bai, G. (2019). Micro-cable reinforced geopolymer composite for extrusion-based 3D printing, Materials Letters, 235, 144-147. https://doi.org/10.1016/j.matlet.2018.09.159
  19. Nerella, V.N., Hempel, S., Mechtcherine, V. (2019). Effects of layer-interface properties on mechanical performance of concrete elements produced by extrusion-based 3D-printing, Construction and Building Materials, 205, 586-601. https://doi.org/10.1016/j.conbuildmat.2019.01.235
  20. Panda, B., Lim, J.H., Tan, M.J. (2019). Mechanical properties and deformation behaviour of early age concrete in the context of digital construction, Composites Part B: Engineering, 165, 563-571. https://doi.org/10.1016/j.compositesb.2019.02.040
  21. Paul, S.C., Tay, Y.W.D., Panda, B., Tan, M.J. (2018). Fresh and hardened properties of 3D printable cementitious materials for building and construction, Archives of Civil and Mechanical Engineering, 18(1), 311-319. https://doi.org/10.1016/j.acme.2017.02.008
  22. Perrot, A., Jacquet, Y., Rangeard, D., Courteille, E., Sonebi, M. (2020). Nailing of layers: a promising way to reinforce concrete 3D printing structures, Materials, 13(7), 1518. https://doi.org/10.3390/ma13071518
  23. Termkhajornkit, P., Nawa, T., Kurumisawa, K. (2006). Effect of water curing conditions on the hydration degree and compressive strengths of fly ash-cement paste, Cement and Concrete Composites, 28(9), 781-789. https://doi.org/10.1016/j.cemconcomp.2006.05.018
  24. Wang, W., Konstantinidis, N., Austin, S. (2020). Flexural behaviour of AR-glass textile reinforced 3D printed concrete beams, Second RILEM International Conference on Concrete and Digital Fabrication, 728-737.
  25. Wolfs, R.J.M., Bos, F.P., Sale, T.A.M. (2018). Early age mechanical behaviour of 3D printed concrete: numerical modelling and experimental testing, Cement and Concrete Research, 106, 103-116. https://doi.org/10.1016/j.cemconres.2018.02.001