Acknowledgement
This work was carried out with the support of "Cooperative Research Program for Agriculture Science and Technology Development (Project No. PJ01503902)" Rural Development Administration, Republic of Korea.
References
- Cajka T, Fiehn O. Toward merging untargeted and targeted methods in mass spectrometry-based metabolomics and lipidomics. Anal Chem 2016;88: 524-45. https://doi.org/10.1021/acs.analchem.5b04491
- Johnson CH, Ivanisevic J, Siuzdak G. Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol 2016;17:451-9. https://doi.org/10.1038/nrm.2016.25
- Wishart DS. Emerging applications of metabolomics in drug discovery and precision medicine. Nat Rev Drug Discov 2016;15:473-84. https://doi.org/10.1038/nrd.2016.32
- Tokarz J, Haid M, Cecil A, et al. Endocrinology meets metabolomics: achievements, pitfalls, and challenges. Trends Endocrinol Metab 2017;28:705-21. https://doi.org/10.1016/j.tem.2017.07.001
- Kim YM, Heyman HM. Mass spectrometry-based metabolomics. In: de Vries R, Tsang A, Grigoriev I, editors. Fungal genomics. Methods in molecular biology. New York, NY, USA: Humana Press; 2018. Vol 1775, pp. 107-18. https://doi.org/10.1007/978-1-4939-7804-5_10
- Adamski J. Introduction to metabolomics. In: Metabolomics for biomedical research (1st edition). Amsterdam, Netherlands: Academic Press; 2020. pp. 1-15. https://doi.org/10.1016/B978-0-12-812784-1.00001-3
- Huo Z, Yu L, Yang J, Zhu Y, Bennett DA, Zhao J. Brain and blood metabolome for alzheimer's dementia: findings from a targeted metabolomics analysis. Neurobiol Aging 2020;86: 123-33. https://doi.org/10.1016/j.neurobiolaging.2019.10.014
- Song Z, Wang H, Yin X, Deng P, Jiang W. Application of NMR metabolomics to search for human disease biomarkers in blood (Review). Clin Chem Lab Med 2019;57:417-41. https://doi.org/10.1515/cclm-2018-0380
- Ranjan R, Sinha N. Nuclear magnetic resonance (NMR)-based metabolomics for cancer research. NMR Biomed 2019;32:e3916. https://doi.org/10.1002/nbm.3916
- Muroya S, Ueda S, Komatsu T, Miyakawa T, Ertbjerg P. MEATabolomics: Muscle and meat metabolomics in domestic animals. Metabolites 2020;10:188. https://doi.org/10.3390/metabo10050188
- Alicja K, Piotr S. Recent advances and challenges in steroid metabolomics for biomarker discovery. Curr Med Chem 2019;26:29-45. https://doi.org/10.2174/0929867324666171113120810
- Xu W, Vervoort J, Saccenti E, Kemp B, van Hoeij RJ, van Knegsel ATM. Relationship between energy balance and metabolic profiles in plasma and milk of dairy cows in early lactation. J Dairy Sci 2020;103:4795-805. https://doi.org/10.3168/jds.2019-17777
- Clemmons BA, Mihelic RI, Beckford RC, et al. Serum metabolites associated with feed efficiency in black angus steers. Metabolomics 2017;13:147. https://doi.org/10.1007/s11306-017-1282-z
- Liao Y, Hu R, Wang Z, et al. Metabolomics profiling of serum and urine in three beef cattle breeds revealed different levels of tolerance to heat stress. J Agric Food Chem 2018;66:6926-35. https://doi.org/10.1021/acs.jafc.8b01794
- Luke TDW, Pryce JE, Wales WJ, Rochfort SJ. A Tale of Two Biomarkers: Untargeted 1H NMR metabolomic fingerprinting of BHBA and NEFA in early lactation dairy cows. Metabolites 2020;10:247. https://doi.org/10.3390/metabo10060247
- Blakebrough-Hall C, Dona A, D'occhio MJ, McMeniman J, Gonzalez LA. Diagnosis of bovine respiratory disease in feedlot cattle using blood 1H NMR metabolomics. Sci Rep 2020;10:115. https://doi.org/10.1038/s41598-019-56809-w
- Getahum D, Alemneh T, Akeberegn D, Getabalew M, Zewdie D. Urea metabolism and recycling in ruminants. Biomed J Sci Tech Res 2019;20:14790-6. https://doi.org/10.26717/BJSTR.2019.20.003401
- Zhang G, Dervishi E, Zwierzchowski G, Mandal R, Wishart DS, Ametaj BN. Urinary metabolomics around parturition identifies metabolite alterations in dairy cows affected post-partum by lameness: Preliminary study. Dairy 2020;1:6-19. https://doi.org/10.3390/dairy1010002
- Dervishi E, Zhang G, Hailemariam D, Mandal R, Wishart DS, Ametaj BN. Urine metabolic fingerprinting can be used to predict the risk of metritis and highlight the pathobiology of the disease in dairy cows. Metabolomics 2018;14:83. https://doi.org/10.1007/s11306-018-1379-z
- Bertram HC, Yde CC, Zhang X, Kristensen NB. Effect of dietary nitrogen content on the urine metabolite profile of dairy cows assessed by nuclear magnetic resonance (NMR)-based metabolomics. J Agric Food Chem 2011;59:12499-505. https://doi.org/10.1021/jf204201f
- Eom JS, Lee SJ, Lee YG, Lee SS. Comparison of volatile fatty acids, monosaccharide analysis and metabolic profiling in rumen fluid according to feeding methods. JKAIS 2018;19:814-24. https://doi.org/10.5762/KAIS.2018.19.12.814
- Eom JS, Lee SJ, Kim HS, et al. Metabolomics comparison of Hanwoo (Bos taurus coreanae) biofluids using proton nuclear magnetic resonance spectroscopy. Metabolites 2020;10:333. https://doi.org/10.3390/metabo10080333
- Eom JS, Lee SJ, Lee SK, et al. Effects of different roughage to concentrate ratios on the changes of productivity and metabolic profiles in milk of dairy cows. Korean J Org Agric 2019; 27:147-60. https://doi.org/10.11625/KJOA.2019.27.2.147
- Kim HS, Lee SJ, Eom JS, Lee SS. Research fecal metabolite according to fed different ratios of roughage to concentrate on lactating cow using 1H-NMR analysis. JKAIS 2020;21: 432-9. https://doi.org/10.5762/KAIS.2020.21.2.432
- Eom JS, Kim ET, Kim HS, et al. Metabolomic comparison of rumen fluid and milk in dairy cattle using proton nuclear magnetic resonance spectroscopy. Anim Biosci 2021;34:213-22. https://doi.org/10.5713/ajas.20.0197
- AOAC International. Official methods of analysis. Seventeen edition. Gaithersburg, MD, USA: Association of Official Analytical Chemists; 2003.
- AOAC International. Official methods of analysis. Eighteen edition. Gaithersburg, MD, USA: Association of Official Analytical Chemists; 2005.
- Van Soest PJ, Robertson JB, Lewis BA. Methods for fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 1991;74:3583-97. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
- Sun Y, Xu C, Li C, et al. Characterization of the serum metabolic profile of dairy cows with milk fever using 1H-NMR spectroscopy. Vet Q 2014;34:159-63. https://doi.org/10.1080/01652176.2014.924642
- Kim MS, Kim IY, Sung HR, et al. Metabolic dysfunction following weight regain compared to initial weight gain in a high-fat diet-induced obese mouse model. J Nutr Biochem 2019;69:44-52. https://doi.org/10.1016/j.jnutbio.2019.02.011
- Grummer RR, Mashek DG, Hayiril A. Dry matter intake and energy balance in the transition period. Vet Clin North Am Food Anim Pract 2004;20:447-70. https://doi.org/10.1016/j.cvfa.2004.06.013
- Zhang G, Ametaj BN. Ketosis an old story under a new approach. Dairy 2020;1:42-60. https://doi.org/10.3390/dairy1010005
- Cusack PMV, Mcmeniman N, Lean IJ. The medicine and epidemiology of bovine respiratory disease in feedlots. Aust Vet J 2003;81:480-7. https://doi.org/10.1111/j.1751-0813.2003.tb13367.x
- Bernabucci U, Biffani S, Buggiotti L, Vitali A, Lacetera N, Nardone A. The effects of heat stress in Italian Holstein dairy cattle. J Dairy Sci 2014;97:471-86. https://doi.org/10.3168/jds.2013-6611
- Sheldon IM, Lewis GS, LeBlanc S, Gilbert RO. Defining post-partum uterine disease in cattle. Theriogenology 2006;65:1516-30. https://doi.org/10.1016/j.theriogenology.2005.08.021