DOI QR코드

DOI QR Code

Photobiomodulation-based Skin-care Effect of Organic Light-emitting Diodes

유기발광다이오드를 이용한 Photobiomodulation 기반 스킨케어 효과

  • Kim, Hongbin (Medical & Bio Photonics Research Center, Korea Photonics Technology Institute) ;
  • Jeong, Hyejung (Medical & Bio Photonics Research Center, Korea Photonics Technology Institute) ;
  • Jin, Seokgeun (OLED Research & Development Center, Material Science Co., Ltd.) ;
  • Lee, Byeongil (Medical & Bio Photonics Research Center, Korea Photonics Technology Institute) ;
  • Ahn, Jae Sung (Medical & Bio Photonics Research Center, Korea Photonics Technology Institute)
  • 김홍빈 (한국광기술원 광의료바이오연구센터) ;
  • 정혜정 (한국광기술원 광의료바이오연구센터) ;
  • 진석근 ((주)머티어리얼사이언스 OLED연구센터) ;
  • 이병일 (한국광기술원 광의료바이오연구센터) ;
  • 안재성 (한국광기술원 광의료바이오연구센터)
  • Received : 2021.06.24
  • Accepted : 2021.07.12
  • Published : 2021.10.25

Abstract

Photobiomodulation (PBM)-based therapy, which uses a phenomenon in which a light source of a specific wavelength band promotes ATP production in mitochondria, has attracted much attention in the fields of biology and medicine because of its effects on wound healing, inflammation reduction, and pain relief. Research on PBM-based therapy has mainly used lasers and light-emitting diodes (LEDs) as light sources and, despite the advantages of organic light-emitting diodes (OLEDs), there have been only a few cases where OLEDs were used in PBM-based therapy. In this research, the skin-care effect of PBM was analyzed using red (λ = 620 nm), green (λ = 525 nm), and blue (λ = 455 nm) OLED lighting modules, and was compared to the PBM effect of LEDs. We demonstrated the PBM-based skin-care effect of the red, green, blue OLED lighting modules by measuring the increase in the amount of collagen type-1 synthesis, the inhibition of melanin synthesis, and the suppression of nitric oxide generation, respectively.

Photobiomodulation (PBM) 치료법은 특정 파장대역의 광원이 미토콘드리아에서 ATP 생성을 촉진하는 현상을 이용하는 치료법으로서 상처 치유, 염증 감소, 통증 완화 효과가 있는 것으로 알려져 생물 및 의학 분야에서 많은 관심을 받고 있다. PBM 치료법에 대한 연구는 주로 레이저, 발광다이오드(LED)를 광원으로 사용하였고, 유기발광다이오드(OLED)가 가지는 장점에도 불구하고 PBM 치료법에 사용된 사례는 제한적이다. 본 연구에서는 적색(λ = 620 nm), 녹색(λ = 525 nm), 청색(λ = 455 nm) OLED 조명모듈을 사용하여 PBM에 의한 피부관리 효과를 분석하고 LED에 의한 PBM 효과와 비교하였다. OLED 조명모듈의 PBM에 의한 피부미용효과는 적색 OLED 조명모듈에 의한 collagen type 1 합성량 증가, 녹색 OLED 조명모듈에 의한 melanin 합성 억제, 청색 OLED 조명모듈에 의한 nitric oxide 생성 억제를 각각 측정하여 입증되었다.

Keywords

References

  1. L. F. de Freitas and M. R. Hamblin, "Proposed mechanisms of photobiomodulation or low-level light therapy," IEEE J. Sel. Top. Quantum Electron. 22, 348-364 (2016). https://doi.org/10.1109/JSTQE.2016.2561201
  2. Y.-Y. Huang, A. C. H. Chen, J. D. Carroll, and M. R. Hamblin, "Biphasic dose response in low level light therapy," Dose-response 7, 358-383 (2009). https://doi.org/10.2203/dose-response.09-027.Hamblin
  3. R. M. da S. Campos, A. R. Damaso, D. C. L. Masquio, A. E. Aquino Jr., M. Sene-Fiorese, F. O. Duarte, L. Tock, N. A. Parizotto, and V. S. Bagnato, "Low-level laser therapy (LLLT) associated with aerobic plus resistance training to improve inflammatory biomarkers in obese adults," Lasers Med. Sci. 30, 1553-1563 (2015). https://doi.org/10.1007/s10103-015-1759-9
  4. D. P. Kuffler, "Photobiomodulation in promoting wound healing: a review," Regen. Med. 11, 107-122 (2016). https://doi.org/10.2217/rme.15.82
  5. E. Merigo, P. Vescovi, M. Margalit, E. Ricotti, S. Stea, M. Meleti, M. Manfredi, and C. Fornaini, "Efficacy of LLLT in swelling and pain control after the extraction of lower impacted third molars," Laser Ther. 24, 39-46 (2015). https://doi.org/10.5978/islsm.15-OR-05
  6. P. Avci, G. K. Gupta, J. Clark, N. Wikonkal, and M. R. Hamblin, "Low-level laser (light) therapy (LLLT) for treatment of hair loss," Lasers Surg. Med. 46, 144-151 (2014). https://doi.org/10.1002/lsm.22170
  7. H. J. Joo, K. H. Jeong, J. E. Kim, and H. Kang, "Various wavelengths of light-emitting diode light regulate the proliferation of human dermal papilla cells and hair follicles via Wnt/β-Catenin and the extracellular signal-regulated kinase pathways," Ann. Dermatol. 29, 747-754 (2017). https://doi.org/10.5021/ad.2017.29.6.747
  8. K. Montazeri, S. Mokmeli, and M. Barat, "The effect of combination of red, infrared and blue wavelengths of low-level laser on reduction of abdominal girth: a before-after case series," J. Lasers Med. Sci. 8, S22-S26 (2017). https://doi.org/10.15171/jlms.2017.s5
  9. N. Tripodi, D. Corcoran, P. Antonello, N. Balic, D. Caddy, A. Knight, C. Meehan, F. Sidiroglou, S. Fraser, D. Kiatos, M. Husaric, V. Apostolopoulos, and J. Feehan, "The effects of photobiomodulation on human dermal fibroblasts in vitro: a systematic review," J. Photochem. Photobiol. B 214, 112100 (2021). https://doi.org/10.1016/j.jphotobiol.2020.112100
  10. J.-L. Boulnois, "Photophysical processes in recent medical laser developments: a review," Lasers Med. Sci. 1, 47-66 (1986). https://doi.org/10.1007/BF02030737
  11. A. Zam, "Laser-Tissue Interaction," in Lasers in Oral and Maxillofacial Surgery, S. Stubinger, F. Klampfl, M. Schmidt, H.-F. Zeilhofe, Eds. (Springer, Cham, Switzerland. 2020), pp. 25-34.
  12. D. Hawkins, N. Houreld, and H. Abrahamse, "Low level laser therapy (LLLT) as an effective therapeutic modality for delayed wound healing," Ann. N. Y. Acad. Sci. 1056, 486-493 (2005). https://doi.org/10.1196/annals.1352.040
  13. P. Avci, A. Gupta, M. Sadasivam, D. Vecchio, Z. Pam, N. Pam, and M. R. Hamblin, "Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring," Semin. Cutan. Med. Surg. 32, 41-52 (2013).
  14. W.-S. Kim and R. G. Calderhead, "Is light-emitting diode phototherapy (LED-LLLT) really effective?," Laser Ther. 20, 205-215 (2011). https://doi.org/10.5978/islsm.20.205
  15. Y. Jeon, H.-R. Choi, J. H. Kwon, S. Choi, K. M. Nam, K.-C. Park, and K. C. Choi, "Sandwich-structure transferable freeform OLEDs for wearable and disposable skin wound photomedicine," Light Sci. Appl. 8, 114 (2019). https://doi.org/10.1038/s41377-019-0221-3
  16. Y. Jeon, H.-R. Choi, M. Lim, S. Choi, H. Kim, J. H. Kwon, K.-C. Park, and K. C. Choi, "A wearable photobiomodulation patch using a flexible red-wavelength OLED and its in vitro differential cell proliferation effects," Adv. Mater. Technol. 3, 1700391 (2018). https://doi.org/10.1002/admt.201700391
  17. S. Mo, P.-S. Chung, and J. C. Ahn, "630 nm-OLED accelerates wound healing in mice via regulation of cytokine release and genes expression of growth factors," Curr. Opt. Photon. 3, 485-495 (2019). https://doi.org/10.3807/COPP.2019.3.6.485
  18. C. Mignon, N. E. Uzunbajakava, B. Raafs, N.V. Botchkareva, and D. J. Tobin, "Photobiomodulation of human dermal fibroblasts in vitro: decisive role of cell culture conditions and treatment protocols on experimental outcome," Sci. Rep. 7, 2797 (2017). https://doi.org/10.1038/s41598-017-02802-0
  19. N. J. Pope, S. M. Powell, J. G. Wigle, and M. L. Denton, "Wavelength- and irradiance-dependent changes in intracellular nitric oxide level," J. Biomed. Opt. 25, 085001 (2020).
  20. H. J. Serrage, S. Joanisse, P. R. Cooper, W. Palin, M. Hadis, O. Darch, A. Philp, and M. R. Milward, "Differential responses of myoblasts and myotubes to photobiomodulation are associated with mitochondrial number," J. Biophotonics 12, e201800411 (2019).
  21. J. Hosoi, E. Abe, T. Suda, and T. Kuroki, "Regulation of melanin synthesis of B16 mouse melanoma cells by 1α, 25-dihydroxyvitamin D3 and retinoic acid," Cancer Res. 45, 1474- 1478 (1985).
  22. M. A. Marletta, P. S. Yoon, R. Iyengar, C. D. Leaf, and J. S. Wishnok, "Macrophage oxidation of L-arginine to nitrite and nitrate: nitric oxide is an intermediate," Biochemistry 27, 8706-8711 (1988). https://doi.org/10.1021/bi00424a003
  23. K. D. Kroncke, K. Fehsel, and V. Kolb-Bachofen, "Inducible nitric oxide synthase in human diseases," Clin. Exp. Immunol. 113, 147-156 (1998).
  24. S. Moncada and E. A. Higgs, "Molecular mechanisms and therapeutic strategies related to nitric oxide," FASEB J. 9, 1319-1330 (1995). https://doi.org/10.1096/fasebj.9.13.7557022
  25. H. Ohshima and H. Bartsch, "Chronic infections and inflammatory processes as cancer risk factors: possible role of nitric oxide in carcinogenesis," Mutat. Res. 305, 253-264 (1994). https://doi.org/10.1016/0027-5107(94)90245-3
  26. T.-S. Chang, "An updated review of tyrosinase inhibitors," Int. J. Mol. Sci. 10, 2440-2475 (2009). https://doi.org/10.3390/ijms10062440
  27. V. J. Hearing, "Biogenesis of pigment granules: a sensitive way to regulate melanocyte function," J. Dermatol. Sci. 37, 3-14 (2005). https://doi.org/10.1016/j.jdermsci.2004.08.014
  28. V. J. Hearing and M. Jimenez, "Mammalian tyrosinase-The critical regulatory control point in melanocyte pigmentation," Int. J. Biochem. 19, 1141-1147 (1987). https://doi.org/10.1016/0020-711X(87)90095-4
  29. C. Bertolotto, P. Abbe, T. J. Hemesath, K. Bille, D. E. Fisher, J. P. Ortonne, and R. Ballotti, "Microphthalmia gene product as a signal transducer in cAMP-induced differentiation of melanocytes," J. Cell Biol. 142, 827-835 (1998). https://doi.org/10.1083/jcb.142.3.827
  30. Y. Cheli, F. Luciani, M. Khaled, L. Beuret, K. Bille, P. Gounon, J. P. Ortonne, C. Bertolotto, and R. Ballotti, "αMSH and Cyclic AMP elevating agents control melanosome pH through a protein kinase A-independent mechanism," J. Biol. Chem. 284, 18699-18706 (2009). https://doi.org/10.1074/jbc.M109.005819
  31. J.-P. Ortonne, "Photoprotective properties of skin melanin," Br. J. Dermatol. 146, 7-10 (2002). https://doi.org/10.1046/j.1365-2133.146.s61.3.x
  32. M. Seiberg, C. Paine, E. Sharlow, M. Eisinger, S. S. Shapiro, P. Andrade-Gordon, and M. Costanzo, "Inhibition of melanosome transfer results in skin lightening1 ," J. Investig. Dermatol. 115, 162-167 (2000). https://doi.org/10.1046/j.1523-1747.2000.00035.x
  33. K. Gelse, E. Poschl, and T. Aigner, "Collagens-structure, function, and biosynthesis," Adv. Drug Deliv. Rev. 55, 1531-1546 (2003). https://doi.org/10.1016/j.addr.2003.08.002
  34. B. Yang, C. Ji, J. Kang, W. Chen, Z. Bi, and Y. Wan, "Trans-Zeatin inhibits UVB-induced matrix metalloproteinase-1 expression via MAP kinase signaling in human skin fibroblasts," Int. J. Mol. Med. 23, 555-560 (2009).
  35. A. M. Parfitt, L. S. Simon, A. R. Villanueva, and S. M. Krane, "Procollagen type I carboxy-terminal extension peptide in serum as a marker of collagen biosynthesis in bone. Correlation with iliac bone formation rates and comparison with total alkaline phosphatase," J. Bone Miner. Res. 2, 427-436 (1987). https://doi.org/10.1002/jbmr.5650020510
  36. F. Sanger, "The Arrangement of amino acids in proteins," in Advances in Protein Chemistry, M. L. Anson, K. Bailey, J. T. Edsall, Eds. (Academic Press, MA, USA. 1952), Vol. 7, pp. 1-67.
  37. K. Tsuji-Naito, S. Ishikura, M. Akagawa, and H. Saeki, "α-Lipoic acid induces collagen biosynthesis involving prolyl hydroxylase expression via activation of TGF-β-Smad signaling in human dermal fibroblasts," Connect. Tissue Res. 51, 378-387 (2010). https://doi.org/10.3109/03008200903486188