• Title/Summary/Keyword: Photobiomodulation

Search Result 30, Processing Time 0.023 seconds

Lightening up Light Therapy: Activation of Retrograde Signaling Pathway by Photobiomodulation

  • Kim, Hong Pyo
    • Biomolecules & Therapeutics
    • /
    • v.22 no.6
    • /
    • pp.491-496
    • /
    • 2014
  • Photobiomodulation utilizes monochromatic (or quasimonochromatic) light in the electromagnetic region of 600~1000 nm for the treatment of soft tissues in a nondestructive and nonthermal mode. It is conceivable that photobiomodulation is based upon the ability of the light to alter cell metabolism as it is absorbed by general hemoproteins and cytochrome c oxidase (COX) in particular. Recently it has been suggested radiation of visible and infrared (IR) activates retrograde signaling pathway from mitochondria to nucleus. In this review, the role of COX in the photobiomodulation will be discussed. Further a possible role of water as a photoreceptor will be suggested.

Intranasal Photobiomodulation Therapy for Brain Conditions: A Review

  • Yoo, Shin Hyuk
    • Medical Lasers
    • /
    • v.10 no.3
    • /
    • pp.132-137
    • /
    • 2021
  • The effects of low-level laser irradiation on cells and tissues, known as photobiomodulation therapy (PBMT), are the basis of photomedicine. Several investigations have evaluated the therapeutic effects of PBMT for neuronal regeneration and differentiation in animal models and humans. Recently, intranasal PBMT (iN-PBMT) has shown potential as a treatment method for neurologic disorders. In this review, we have summarized the various modes of iN-PBMT delivery and their application in the treatment of brain disorders.

Does photobiomodulation on the root surface decrease the occurrence of root resorption in reimplanted teeth? A systematic review of animal studies

  • Theodoro Weissheimer;Karolina Frick Bischoff;Carolina Horn Troian Michel;Bruna Barcelos So;Manoela Domingues Martins;Matheus Albino Souza;Ricardo Abreu da Rosa;Marcus Vinicius Reis So
    • Restorative Dentistry and Endodontics
    • /
    • v.48 no.3
    • /
    • pp.24.1-24.16
    • /
    • 2023
  • This review aimed to answer the following question "Does photobiomodulation treatment of the root surface decrease the occurrence of root resorption in reimplanted teeth?" Electronic searches were performed in the MEDLINE/PubMed, Cochrane Library, Scopus, Web of Science, Embase, and Grey Literature Report databases. Risk of bias was evaluated using SYRCLE Risk of Bias tool. The Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) tool was used to assess the certainty of evidence. In total, 6 studies were included. Five studies reported a reduced occurrence of root resorption in teeth that received photobiomodulation treatment of the root surface prior to replantation. Only 1 study reported contradictory results. The photobiomodulation parameters varied widely among studies. GRADE assessment showed a low certainty of evidence. It can be inferred that photobiomodulation treatment of the root surface prior to replantation of teeth can reduce the occurrence of root resorption. Nonetheless, further clinical studies are needed.

Photobiomodulation therapy activates YAP and triggers proliferation and dedifferentiation of Müller glia in mammalian retina

  • Seo-Yeon Kim;Myung-Jun Song;In-Beom Kim;Tae Kwan Park;Jungmook Lyu
    • BMB Reports
    • /
    • v.56 no.9
    • /
    • pp.502-507
    • /
    • 2023
  • Photobiomodulation therapy has been proposed as a promising therapeutic approach for retinal degenerative diseases. However, its effect on the regenerative capacity in mammalian retina and its intracellular signalling mechanisms remain unknown. Here, we show that photobiomodulation with 670 nm light stimulates Müller glia cell cycle re-entry and dedifferentiation into a progenitor-like state in both the uninjured and injured retina. We also find that 670 nm light treatment inhibits the Hippo pathway, which is activated in Müller glia following NaIO3-induced retinal injury. YAP, a major downstream effector of the Hippo signalling pathway was translocated into the nucleus of Müller glia along with YAP dephosphorylation in retina treated with 670 nm light. Deficiency of YAP attenuated Müller glia cell cycle re-entry and dedifferentiation. Our data reveal that the Hippo-YAP signalling pathway is associated with the photostimulatory effect on regenerative response in mammalian retina, and suggest a potential therapeutic strategy for retinal degenerative diseases.

Photobiomodulation Mediated by Red and Infrared Light: A Study of Its Effectiveness on Corneal Epithelial Cells and Wound Healing (적색 및 적외선 빛을 이용한 Photobiomodulation: 각막상피세포에 대한 효과와 상처 치유에 관한 연구)

  • Sun Hee Ahn;Jae Sung Ahn;Byeongil Lee
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.2
    • /
    • pp.45-52
    • /
    • 2023
  • In this study, we have investigated the effect of photobiomodulation (PBM) on corneal wound healing, using a low-power light-emitting diode (LED) at different wavelengths. We found that LEDs with wavelengths ranging from 623 to 940 nm had no significant cytotoxic effects on corneal epithelial cells. The effect of PBM on promoting cell migration was analyzed by scratch assay, and it was found that PBM at 623 nm significantly increased cell migration and promoted wound healing. Furthermore, the expression of genes related to cell migration and wound healing was analyzed, and it was found that PBM at 623 nm upregulated the expression of the genes FGF-1 and MMP2, which are known to promote cell proliferation and extracellular matrix degradation. These findings suggest that PBM with low-powered light at specific wavelengths, particularly 623 nm, could be utilized to treat corneal injury.

Photobiomodulation and implants: implications for dentistry

  • Tang, Elieza;Arany, Praveen
    • Journal of Periodontal and Implant Science
    • /
    • v.43 no.6
    • /
    • pp.262-268
    • /
    • 2013
  • The use of dental implants has become a mainstay of rehabilitative and restorative dentistry. With an impressive clinical success rate, there remain a few minor clinical issues with the use of implants such as peri-implant mucositis and peri-implantitis. The use of laser technology with implants has a fascinating breadth of applications, beginning from their precision manufacturing to clinical uses for surgical site preparation, reducing pain and inflammation, and promoting osseointegration and tissue regeneration. This latter aspect is the focus of this review, which outlines various studies of implants and laser therapy in animal models. The use of low level light therapy or photobiomodulation has demonstrated its efficacy in these studies. Besides more research studies to understand its molecular mechanisms, significant efforts are needed to standardize the clinical dosing and delivery protocols for laser therapy to ensure the maximal efficacy and safety of this potent clinical tool for photobiomodulation.

Clinical Applications of Photobiomodulation Therapy in the Management of Breast Cancer-related Lymphedema

  • Min, Junwon;Park, Yoonjoon
    • Medical Lasers
    • /
    • v.10 no.4
    • /
    • pp.189-194
    • /
    • 2021
  • Breast cancer-related lymphedema (BCRL) is characterized by the persistent accumulation of interstitial fluid in the peripheral tissues after treatment for breast cancer. Photobiomodulation (PBM) therapy is widely used as supportive care for patients with BCRL. A search was performed in the PubMed database to find relevant articles published over the last 20 years. Randomized controlled trials that evaluated the efficacy of PBM therapy on BCRL were included. A total of 24 studies were identified through the PubMed database. Seven studies were used for the final analysis, after excluding items that did not meet the duplication and inclusion criteria. Although PBM showed some improvement in reducing arm circumference and the symptoms related to BCRL, the results of the meta-analysis did not show any significant benefit in alleviating lymphedema. Further studies are needed with the recruitment of more participants to evaluate the long-term efficacy and safety of PBM in the management of BCRL.

Decade Long Survey of Low-level Laser Therapy/Photobiomodulation (LLLT/PBM) Therapy for Oral Mucositis Treatment

  • Ryu, Hyun Seok;Abueva, Celine;Chung, Phil-Sang;Woo, Seung Hoon
    • Medical Lasers
    • /
    • v.10 no.3
    • /
    • pp.138-145
    • /
    • 2021
  • Low-level laser therapy or photobiomodulation (LLLT/PBM) therapy has been widely applied to enhance and accelerate the recovery of oral mucositis. This study investigates the documented effect of LLLT on oral mucositis caused by chemotherapy. This review appraises 6 animal studies and 12 clinical studies published in the Pubmed database during the past 10 years, related to the application of LLLT for the treatment of mucositis. Despite varied parameters and diverse conditions, the assessed articles indicate that application of LLLT on oral mucositis using near-infrared wavelengths is prophylactic, reduces pain, and enables a rapid recovery. Various combined treatments were also identified among the published papers, which further establishes the efficacy of LLLT as a viable treatment.

Effect of Photobiomodulation on the Mesenchymal Stem Cells

  • Yoo, Shin Hyuk
    • Medical Lasers
    • /
    • v.9 no.2
    • /
    • pp.119-125
    • /
    • 2020
  • Photobiomodulation forms the basis of photomedicine and is defined as the effect of coherent or non-coherent light sources, such as low-level lasers and light-emitting diodes, on cells and tissues. This treatment technique affects cell functions, proliferation, and migration, and plays an important role in tissue regeneration. Mesenchymal stem cells (MSCs) are known to be beneficial for tissue regeneration, and the combination of stem cell therapy and laser therapy appears to positively affect treatment outcomes. In general, a low-power laser has a positive effect on MSCs, thereby facilitating improvements in different disease models. This study elucidates the mechanisms and effects of low-power laser irradiation on the proliferation, migration, and differentiation of various MSCs that have been examined in different studies.

Application of Photobiomodulation in Hearing Research: Animal Study

  • Lee, Jae-Hun;Jung, Jae Yun
    • Medical Lasers
    • /
    • v.9 no.1
    • /
    • pp.1-5
    • /
    • 2020
  • Hearing organs have unique characteristics and have a role in processing external sensory signals. Sensory hair cells and nerve fibers in the organ of Corti can be damaged by various causes and they do not regenerate themselves. Medication used for clinical treatment for the inner ear is limited due to the anatomical structure of the inner ear. Photobiomodulation (PBM) is a therapeutic approach that uses various sources of light and the success of PBM therapy is highly reliant on the parameters of the light sources. The positive effects of PBM have been reported in various clinical fields. This paper summarizes the previously reported research on PBM for the treatment of hearing damage in animal models.