DOI QR코드

DOI QR Code

Study of the Effect of the Transmittance of a Diffuser Plate on the Optical Characteristics of High-power Quantum-dot Illumination

확산판의 투과율이 고출력 양자점 조명의 광특성에 미치는 영향에 대한 연구

  • Kim, Hye-Rin (School of Nano Convergence Technology, Nano Convergence Technology Center, Hallym University) ;
  • You, Dong Geun (School of Nano Convergence Technology, Nano Convergence Technology Center, Hallym University) ;
  • You, Jae Hwan (School of Nano Convergence Technology, Nano Convergence Technology Center, Hallym University) ;
  • Jang, Jun Won (School of Nano Convergence Technology, Nano Convergence Technology Center, Hallym University) ;
  • Choi, Moo Kyu (School of Nano Convergence Technology, Nano Convergence Technology Center, Hallym University) ;
  • Hong, Seung Chan (School of Nano Convergence Technology, Nano Convergence Technology Center, Hallym University) ;
  • Ko, Jae-Hyeon (School of Nano Convergence Technology, Nano Convergence Technology Center, Hallym University) ;
  • Joe, Sung-Yoon (Light/Display Convergence R&BD Division, Cheorwon Plasma Research Institute) ;
  • Kim, Yongduk (Light/Display Convergence R&BD Division, Cheorwon Plasma Research Institute) ;
  • Park, Taehee (GLVISION Co., Ltd.) ;
  • Ko, Young Wook (GLVISION Co., Ltd.)
  • 김혜린 (한림대학교 나노융합스쿨 나노융합기술연구소) ;
  • 유동근 (한림대학교 나노융합스쿨 나노융합기술연구소) ;
  • 유재환 (한림대학교 나노융합스쿨 나노융합기술연구소) ;
  • 장준원 (한림대학교 나노융합스쿨 나노융합기술연구소) ;
  • 최무규 (한림대학교 나노융합스쿨 나노융합기술연구소) ;
  • 홍승찬 (한림대학교 나노융합스쿨 나노융합기술연구소) ;
  • 고재현 (한림대학교 나노융합스쿨 나노융합기술연구소) ;
  • 조성윤 (철원플라즈마산업기술연구원 광/디스플레이융합사업본부) ;
  • 김용득 (철원플라즈마산업기술연구원 광/디스플레이융합사업본부) ;
  • 박태희 (주식회사 지엘비젼) ;
  • 고영욱 (주식회사 지엘비젼)
  • Received : 2021.07.08
  • Accepted : 2021.07.30
  • Published : 2021.10.25

Abstract

The optical characteristics of high-power direct-lit white light-emitting diode (LED) lighting were investigated, where a quantum dot (QD) film was adopted to enhance the color-rendering index (CRI). The transmittance of the diffuser plate and the concentration of the QD film were varied in this study. The color coordinates and the correlated color temperature (CCT) did not show any appreciable change, while the CRI values increased slightly as the transmittance of the diffuser plate decreased. The investigated optical properties were nearly independent of the viewing angle, and the luminance distribution was close to Lambertian. The CCT decreased from approximately 6000 K to approximately 4000 K as the concentration of the QD film increased from 0 to 7.5 wt%, which was due to the enhanced red component in the emission spectrum. The CRI increased to approximately 95 for some optical configurations of the lighting. These results demonstrate that glare-free, color-changeable, high-rendering LED lighting can be realized by using a combination of a diffuser plate of appropriate transmittance and a red QD film.

눈부심 방지를 위한 확산판의 투과율과 연색지수 향상을 위한 양자점 필름의 농도가 고출력 직하형 백색 LED 조명의 광특성에 미치는 영향을 조사했다. 확산판의 투과율이 감소할 경우 조명의 휘도는 줄어들었고 색좌표, 상관색온도는 별다른 변화를 보이지 않았으며 연색지수는 약간 상승했다. 시야각에 따른 광특성의 편차는 거의 없었고 휘도 분포는 람버시안 분포에 가까웠다. 양자점 필름의 농도가 증가할 경우 스펙트럼 상 적색 성분이 늘어나면서 이 성분의 비중을 표현하는 색좌표 x가 증가했고 상관색온도는 약 6000 K에서 4000 K 부근으로 현저히 감소했다. 아울러 조명의 구조를 최적화하면 연색지수가 95까지 증가함을 확인했다. 이런 결과는 적절한 투과율의 확산판과 양자점 필름의 조합을 통해 눈부심이 없고 시야각에 따른 색편차가 거의 없으며 특히 색좌표의 가변이 가능한 고연색성의 조명 구현이 가능함을 보여준다.

Keywords

Acknowledgement

본 연구는 산업통상자원부와 한국산업기술진흥원의 스마트특성화기반구축사업을 통한 지원을 받았습니다(No. P0013743).

References

  1. P. Pust, P. J. Schmidt, and W. Schnick, "A revolution in lighting," Nat. Mater. 14, 454-458 (2015). https://doi.org/10.1038/nmat4270
  2. J. McKittrick and L. E. Shea-Rohwer, "Review: down conversion materials for solid-state lighting," J. Am. Ceram. Soc. 97, 1327-1352 (2014). https://doi.org/10.1111/jace.12943
  3. E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, "Whitelight-emitting diodes with quantum dot color converters for display backlights," Adv. Mater. 22, 3076-3080 (2010). https://doi.org/10.1002/adma.201000525
  4. J. S. Steckel, J. Ho, C. Hamilton, C. Breen, W. Liu, P. Allen, J. Xi, and S. Coe-Sullivan, "Quantum dots: the ultimate downconversion material for LCD displays," Dig. Tech. Pap. - SID Int. Symp. 45, 130-133 (2014).
  5. H.-W. Chen, R.-D. Zhu, J. He, W. Duan, W. Hu, Y.-Q. Lu, M.-C. Li, S.-L. Lee, Y.-J. Dong, and S.-T. Wu, "Going beyond the limit of an LCD's color gamut," Light Sci. Appl. 6, e17043 (2017). https://doi.org/10.1038/lsa.2017.43
  6. H.-J. Kim, M.-H. Shin, J.-Y. Lee, J.-H. Kim, and Y.-J. Kim, "Realization of 95% of the Rec. 2020 color gamut in a highly efficient LCD using a patterned quantum dot film," Opt. Ex
  7. J.-G. Lee and J.-H. Ko, "Simulation study on the improvement of the luminance and the color uniformities of integrated quantum-dot backlights for LCD applications," J. Korean Phys. Soc. 77, 264-269 (2020). https://doi.org/10.3938/jkps.77.264
  8. G. J. Lee, J.-G. Lee, Y. Kim, T. Park, Y. W. Ko, and J.-H. Ko, "The effect of the reflective property of a reflection film on the performance of backlight units with quantum-dot films for LCD applications," J. Inf. Disp. 22, 55-61 (2021). https://doi.org/10.1080/15980316.2020.1813822
  9. C. C. Lin, A. Meijerink, and R.-S. Liu, "Critical red components for next-generation white LEDs," J. Phys. Chem. Lett. 7, 495-503 (2016). https://doi.org/10.1021/acs.jpclett.5b02433
  10. W.-L. Wu, M.-H. Fang, W. Zhou, T. Lesniewski, S. Mahlik, M. Grinberg, M. G. Brik, H.-S. Sheu, B.-M. Cheng, J. Wang, and R.-S. Liu, "High color rendering index of Rb2GeF6:Mn4+ for light-emitting diodes," Chem. Mater. 29, 935-939 (2017). https://doi.org/10.1021/acs.chemmater.6b05244
  11. D. Luo, L. Wang, S. W. Or, H. Zhang, and R.-J. Xie, "Realizing superior white LEDs with both high R9 and luminous efficacy by using dual red phosphors," RSC Adv. 7, 25964-25968 (2017). https://doi.org/10.1039/C7RA04614F
  12. M. Kim, W. B. Park, B. Bang, C. H. Kim, and K.-S. Sohn, "Radiative and non-radiative decay rate of K2SiF6:Mn4+ phosphors," J. Mater. Chem. C 3, 5484-5489 (2015). https://doi.org/10.1039/C5TC00757G
  13. D. Y. Jeong, J. Ju, and D. H. Kim, "Optimized photoluminescence of K2SiF6:Mn4+ phosphors for LED solid-state lighting," New. Phys.: Sae Mulli 66, 311-316 (2016). https://doi.org/10.3938/NPSM.66.311
  14. H.-W. Choi, M. H. Choi, and J.-H. Ko, "Effect of temperature on the luminous properties of white-light-emitting diodes with red and green phosphors," New Phys.: Sae Mulli 63, 1149-1154 (2013). https://doi.org/10.3938/NPSM.63.1149
  15. S. Nizamoglu, T. Erdem, X. W. Sun, and H. V. Demir, "Warm-white light-emitting diodes integrated with colloidal quantum dots for high luminous efficacy and color rendering," Opt. Lett. 35, 3372-3374 (2010). https://doi.org/10.1364/OL.35.003372
  16. K. A. Denault, A. A. Mikhailovsky, S. Brinkley, S. P. DenBaars, and R. Seshadri, "Improving color rendition in solid state white lighting through the use of quantum dots," J. Mater. Chem. C 1, 1461-1466 (2013). https://doi.org/10.1039/c2tc00420h
  17. X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, "Solution-processed, high-performance light-emitting diodes based on quantum dots," Nature 515, 96-99 (2014). https://doi.org/10.1038/nature13829
  18. D.-Y. Jo and H. Yang, "Spectral broadening of Cu-In-Zn-S quantum dot color converters for high color rendering white lighting device," J. Lumin. 166, 227-232 (2015). https://doi.org/10.1016/j.jlumin.2015.05.043
  19. S.-R. Chung, S.-S. Chen, K.-W. Wang, and C.-B. Siao, " Promotion of solid-state lighting for ZnCdSe quantum dot modified-YAG-based white light-emitting diodes," RSC Adv. 6, 51989-51996 (2016). https://doi.org/10.1039/C6RA10673K
  20. J.-H. Kim, D.-Y. Jo, K.-H. Lee, E.-P. Jang, C.-Y. Han, J.-H. Jo, and H. Yang, "White electroluminescent lighting device based on a single quantum dot emitter," Adv. Mater. 28, 5093-5098 (2016). https://doi.org/10.1002/adma.201600815
  21. H. C. Yoon, J. H. Oh, S. Lee, J. B. Park, and Y. R. Do, "Circadian-tunable Perovskite quantum dot-based down-converted multi-package white LED with a color fidelity index over 90," Sci. Rep. 7, 2808 (2017). https://doi.org/10.1038/s41598-017-03063-7
  22. J.-H. Kim, B.-Y. Kim, E.-P. Jang, C.-Y. Han, J.-H. Jo, Y. R. Do, and H. Yang, "A near-ideal color rendering white solidstate lighting device copackaged with two color-separated Cu-X-S (X = Ga, In) quantum dot emitters," J. Mater. Chem. C 5, 6755-6761 (2017). https://doi.org/10.1039/C7TC01875D
  23. T. Meng, T. Yuan, X. Li, Y. Li, L. Fan, and S. Yang, "Ultra-broad-band, red sufficient, solid white emission from carbon quantum dot aggregation for single component warm white light emitting diodes with a 91 high color rendering index," Chem. Commun. 55, 6531-6534 (2019). https://doi.org/10.1039/c9cc01794a
  24. H. Zhang, Q. Su, and S. Chen, "Quantum-dot and organic hybrid tandem light-emitting diodes with multi-functionality of full-color-tunability and white-light-emission," Nat. Commun. 11, 2826 (2020). https://doi.org/10.1038/s41467-020-16659-x
  25. S. Rhee, K. Kim, J. Roh, and J. Kwak, "Recent progress in high-luminance quantum dot light-emitting diodes," Curr. Opt. Photon. 4, 161-173 (2020). https://doi.org/10.3807/COPP.2020.4.3.161
  26. A. Hong, J. Kim, and J. Kwak, "Sunlike white quantum dot light-emitting diodes with high color rendition quality," Adv. Opt. Mater. 8, 2001051 (2020). https://doi.org/10.1002/adom.202001051
  27. B. Li, M. Lu, J. Feng, J. Zhang, P. M. Smowton, J. I. Sohn, I.-K. Park, H. Zhong, and B. Hou, "Colloidal quantum dot hybrids: an emerging class of materials for ambient lighting," J. Mater. Chem. C 8, 10676-10695 (2020). https://doi.org/10.1039/d0tc01349h
  28. Z. Luo, Y. Chen, and S.-T. Wu, "Wide color gamut LCD with a quantum dot backlight," Opt. Express 21, 26269-26284 (2013). https://doi.org/10.1364/OE.21.026269
  29. Y. Altintas, S. Genc, M. Y. Talpur, and E. Mutlugun, "CdSe/ZnS quantum dot films for high performance flexible lighting and display applications," Nanotechnol. 27, 295604 (2016). https://doi.org/10.1088/0957-4484/27/29/295604
  30. Y.-H. Ko and J.-G. Park, "Novel quantum dot enhancement film with a super-wide color gamut for LCD displays," J. Korean Phys. Soc. 72, 45-51 (2018). https://doi.org/10.3938/jkps.72.45
  31. S. J. Kim, H. W. Jang, J.-G. Lee, J.-H. Ko, Y. W. Ko, and Y. Kim, "Study on improvements in the emission properties of quantum-dot film-based backlights," New. Phys.: Sae Mulli 69, 861-866 (2019). https://doi.org/10.3938/npsm.69.861
  32. Q. Hong, K.-C. Lee, Z. Luo, and S.-T. Wu, "High-efficiency quantum dot remote phosphor film," Appl. Opt. 54, 4617-4622 (2015). https://doi.org/10.1364/AO.54.004617
  33. Y. Alltintas, S. Genc, M. Younis, and E. Mutlugun, "CdSe/ZnS quantum dot films for high performance flexible lighting and display applications," Nanotechnology 27, 295604 (2016). https://doi.org/10.1088/0957-4484/27/29/295604
  34. J.-Y. Lien, C-J. Chen, R.-K. Chiang, and S.-L. Wang, "High color-rendering warm-white lamps using quantum-dot color conversion films," Opt. Express 24, A1021-A1032 (2016).
  35. S. C. Hong, J. Baek, H. Lee, G. J. Lee, J.-G. Lee, J.-H. Ko, Y. W. Ko, Y. Kim, and T. Park, "Study on the improvement of the color rendering index of white LEDs by using red quantum dots," New. Phys.: Sae Mulli 70, 698-704 (2020). https://doi.org/10.3938/npsm.70.698
  36. J.-G. Lee, G. J. Lee, S. C. Hong, J.-H. Ko, T. Park, and Y. W. Ko, "Shape optimization of quantum-dot caps for high color-rendering white light-emitting diodes studied by optical simulation," J. Korean Phys. Soc. 78, 822-828 (2021). https://doi.org/10.1007/s40042-021-00072-8
  37. G. J. Lee, S. C. Hong, J.-G. Lee, and J.-H. Ko, "Optical simulation study on the improvement of color-rendering characteristics of white light emitting diodes by using red quantum-dot films," Korean J. Opt. Photon. 32, 163-171 (2021). https://doi.org/10.3807/KJOP.2021.32.4.163
  38. S. C. Hong, S. T. Gwak, S. Park, G. J. Lee, J.-G. Lee, J.-H. Ko, S. Y. Joe, Y. Kim, T. Park, Y. W. Ko, "Improvement of color-rendering characteristics of white light emitting diodes by using red quantum dot films," Curr. Appl. Phys. 31, 199-207 (2021). https://doi.org/10.1016/j.cap.2021.09.008