DOI QR코드

DOI QR Code

Efficiency Comparison of Environmental DNA Metabarcoding of Freshwater Fishes according to Filters, Extraction Kits, Primer Sets and PCR Methods

분석조건별 담수어류의 환경 DNA 메타바코딩 효율 비교: 필터, 추출 키트, 프라이머 조합 및 PCR 방법

  • Kim, Keun-Sik (Research Center for Endangered Species, National Institute of Ecology) ;
  • Kim, Keun-Yong (AquaGenTech Co., Ltd) ;
  • Yoon, Ju-Duk (Research Center for Endangered Species, National Institute of Ecology)
  • 김근식 (국립생태원 멸종위기종복원센터) ;
  • 김근용 (아쿠아진텍(주)) ;
  • 윤주덕 (국립생태원 멸종위기종복원센터)
  • Received : 2021.09.09
  • Accepted : 2021.09.15
  • Published : 2021.09.30

Abstract

Environmental DNA (eDNA) metabarcoding is effective method with high detection sensitivity for evaluating fish biodiversity and detecting endangered fish from natural water samples. We compared the richness of operational taxonomic units(OTUs) and composition of freshwater fishes according to filters(cellulose nitrate filter vs. glass fiber filter), extraction kits(DNeasy2® Blood & Tissue Kit vs. DNeasy2® PowerWater Kit), primer sets (12S rDNA vs. 16S rDNA), and PCR methods (conventional PCR vs. touchdown PCR) to determine the optimal conditions for metabarcoding analysis of Korean freshwater fish. The glass fiber filter and DNeasy2® Blood & Tissue Kit combination showed the highest number of freshwater fish OTUs in both 12S and 16S rDNA. Among the four types, the primer sets only showed statistically significant difference in the average number of OTUs in class Actinopterygii (non-parametric Wilcoxon signed ranks test, p=0.005). However, there was no difference in the average number of OTUs in freshwater fish. The species composition also showed significant difference according to primer sets (PERMANOVA, Pseudo-F=6.9489, p=0.006), but no differences were observed in the other three types. The non-metric multidimensional scaling (NMDS) results revealed that species composition clustered together according to primer sets based on similarity of 65%; 16S rDNA primer set was mainly attributed to endangered species such as Microphysogobio koreensis and Pseudogobio brevicorpus. In contrast, the 12S rDNA primer set was mainly attributed to common species such as Zacco platypus and Coreoperca herzi. This study provides essential information on species diversity analysis using metabarcoding for environmental water samples obtained from rivers in Korea.

메타바코딩을 이용한 환경 DNA 분석은 검출 감도가 높아 어류의 생물다양성 평가 및 멸종위기종의 검출에 유용한 기술이다. 이번 연구는 메타바코딩을 이용해 우리나라 담수어류를 대상으로 높은 검출 효율을 보일 수 있는 적합한 분석방법을 확인하기 위해 4가지 분석조건별, 즉 필터(cellulose nitrate filter, glass fiber filter), 추출 키트(DNeasy® Blood & Tissue Kit, DNeasy® PowerWater Kit), 프라이머 조합(12S rDNA, 16S rDNA) 그리고 PCR 방법(conventional PCR, touchdown PCR)로 나타나는 Operational Taxonomic Units(OTUs) 수와 종 조성을 비교하였다. Glass fiber filter와 DNeasy® Tissue & Blood Kit를 이용해 추출한 시료는 12S rDNA와 16S rDNA 프라이머 조합에서 담수어류 OTUs가 가장 많이 검출되었다. 모든 분석조건 중 프라이머 조합에서만 조기어강(Class Actinopterygii) 평균 OTUs 수에서 통계적으로 유의한 차이를 보였고(Non-parametric Wilcoxon Signed Ranks Test, p=0.005), 담수어류 평균 OTUs 수는 유의하지 않았다. 종 조성 비교 결과 역시 프라이머 조합에서 유의한 차이를 보였고(PERMANOVA, Pseudo-F=6.9489, p=0.006), 나머지 분석조건에서는 유의한 차이를 보이지 않았다. NMDS 분석 결과 종 조성은 유사도 65% 기준에서 프라이머 조합에 따라 묶였고, 16S rDNA 프라이머 세트는 주로 멸종위기종인 모래주사(Microphysogobio koreensis), 꼬치동자개(Pseudogobio brevicorpus)가 기여하였고, 12S rDNA 프라이머 세트는 주로 일반종인 피라미(Zacco platypus), 꺽지(Coreoperca herzi) 등이 기여한 것으로 나타났다. 본 연구는 국내 하천에서 채취한 시료에 대한 메타바코딩을 이용한 종 다양성 분석의 기초정보를 제공한다.

Keywords

Acknowledgement

본 논문은 환경부의 재원으로 국립생태원의 지원을 받아 수행하였습니다(NIE-기반연구-2021-45).

References

  1. Akamatsu, Y., G. Kume, M. Gotou, T. Kono, T. Fujii, R. Inui and Y. Kurita. 2020. Using environmental DNA analyses to assess the occurrence and abundance of the endangered amphidromous fish Plecoglossus altivelis ryukyuensis. Biodiversity Data Journal 8: e39679. https://doi.org/10.3897/bdj.8.e39679
  2. Akre, T.S., L.D. Parker, E. Ruther, J.E. Maldonado, L. Lemmon and N.R. McInerney. 2019. Concurrent visual encounter sampling validates eDNA selectivity and sensitivity for the endangered wood turtle (Glyptemys insculpta). PLoS ONE 14: e0215586. https://doi.org/10.1371/journal.pone.0215586
  3. Altschul, S.F., W. Gish, W. Miller, E.W. Myers and D.J. Lipman. 1990. Basic local alignment search tool. Journal of Molecular Biology 215: 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
  4. Anderson, M.J. 2005. PERMANOVA: a FORTRAN Computer Program for Permutational Multivariate Analysis of Aariance. Department of Statistics, University of Auckland, Auckland.
  5. Bergman, P.S., G. Schumer, S. Blankenship and E. Campbell. 2016. Detection of adult green sturgeon using environmental DNA analysis. PLoS ONE 11: e0153500. https://doi.org/10.1371/journal.pone.0153500
  6. Bolyen, E., J.R. Rideout, M.R. Dillon, N.A. Bokulich, C.C. Abnet, G.A. Al-Ghalith, H. Alexander, E.J. Alm, M. Arumugam, F. Asnicar, Y. Bai, J.E. Bisanz, K. Bittinger, A. Brejnrod, C.J. Brislawn, C.T. Brown, B.J. Callahan, A.M. Caraballo-Rodriguez, J. Chase, E.K. Cope, R. Da Silva, C. Diener, P.C. Dorrestein, G.M. Douglas, D.M. Durall, C. Duvallet, C.F. Edwardson, M. Ernst, M. Estaki, J. Fouquier, J.M. Gauglitz, S.M. Gibbons, D.L. Gibson, A. Gonzalez, K. Gorlick, J. Guo, B. Hillmann, S. Holmes, H. Holste, C. Huttenhower, G.A. Huttley, S. Janssen, A.K. Jarmusch, L. Jiang, B.D. Kaehler, K.B. Kang, C.R. Keefe, P. Keim, S.T. Kelley, D. Knights, I. Koester, T. Kosciolek, J. Kreps, M.G.I. Langille, J. Lee, R. Ley, Y.-X. Liu, E. Loftfield, C. Lozupone, M. Maher, C. Marotz, B.D. Martin, D. McDonald, L.J. McIver, A.V. Melnik, J.L. Metcalf, S.C. Morgan, J.T. Morton, A.T. Naimey, J.A. Navas-Molina, L.F. Nothias, S.B. Orchanian, T. Pearson, S.L. Peoples, D. Petras, M.L. Preuss, E. Pruesse, L.B. Rasmussen, A. Rivers, M.S. Robeson II, P. Rosenthal, N. Segata, M. Shaffer, A. Shiffer, R. Sinha, S.J. Song, J.R. Spear, A.D. Swafford, L.R. Thompson, P.J. Torres, P. Trinh, A. Tripathi, P.J. Turnbaugh, S. UlHasan, J.J.J. van der Hooft, F. Vargas, Y. Vazquez-Baeza, E. Vogtmann, M. von Hippel, W. Walters, Y. Wan, M. Wang, J. Warren, K.C. Weber, C.H.D. Williamson, A.D. Willis, Z.Z. Xu, J.R. Zaneveld, Y. Zhang, Q. Zhu, R. Knight and J.G. Caporaso. 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology 37: 852-857. https://doi.org/10.1038/s41587-019-0209-9(2019)
  7. Bylemans, J., E.M. Furlan, D.M. Gleeson, C.M. Hardy and R.P. Duncan. 2018. Does size matter? An experimental evaluation of the relative abundance and decay rates of aquatic environmental DNA. Environmental Science & Technology 52: 6408-6416. https://doi.org/10.1021/acs.est.8b01071
  8. Carim, K., T. Wilcox, M. Young, K. McKelvey, M. Schwartz. 2015. Protocol for collecting eDNA samples from streams [Version 2.1]. Missoula, MT: U.S. Department of Agriculture Forest Service, Conservation NGCfWaF; 2015 July 2015.
  9. Clarke, K.R. and W.M. Warwick. 1994. Similarity-based testing for community pattern: the 2-way layout with no replication. Marine Biology 118: 167-176. https://doi.org/10.1007/BF00699231
  10. Clarke, K.R. and R.N. Gorley. 2006. PRIMER v6: User Manual/Tutorial(Plymouth Routines in Multivariate Ecological Research). PRIMER-E, Plymouth.
  11. Clarke, L.J., J.M. Beard, K.M. Swadling and B.E. Deagle. 2017. Effect of marker choice and thermal cycling protocol on zooplankton DNA metabarcoding studies. Ecology and Evolution 7: 873-883. https://doi.org/10.1002/ece3.2667
  12. Collins, R.A., J. Bakker, O.S. Wangensteen, A.Z. Soto, L. Corrigan, D.W. Sims, M.J. Genner and S. Mariani. 2019. Nonspecific amplification compromises environmental DNA metabarcoding with COI. Methods in Ecology and Evolution 10: 1985-2001. https://doi.org/10.1111/2041-210x.13276
  13. Day, K., H. Campbell, A. Fisher, K. Gibb, B. Hill, A. Rose and S.N. Jarman. 2019. Development and validation of an environmental DNA test for the endangered Gouldian finch. Endangered Species Research 40: 171-182. https://doi.org/10.3354/ESR00987
  14. Deiner, K., J.C. Walser, E. Machler and F. Altermatt. 2015. Choice of capture and extraction methods affect detection of freshwater biodiversity from environmental DNA. Biological Conservation 183: 53-63. https://doi.org/10.1016/j.biocon.2014.11.018
  15. Deiner, K., M.A. Renshaw, Y. Li, B.P. Olds, D.M. Lodge and M.E. Pfrender. 2017. Long-range PCR allows sequencing of mitochondrial genomes from environmental DNA. Methods in Ecology and Evolution 8: 1888-1898. https://doi.org/10.1111/2041-210X.12836
  16. Edgar, R.C. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26: 2460-2461. https://doi.org/10.1093/bioinformatics/btq461
  17. Evans, N.T., B.P. Olds, M.A. Renshaw, C.R. Turner, Y. Li, C.L. Jerde, A.R. Mahon, M.E. Pfrender, G.A. Lamberti and D.M. Lodge. 2015. Quantification of mesocosm fish and amphibian species diversity via environmental DNA metabarcoding. Molecular Ecology Resources 16: 29-41. https://doi.org/10.1111/1755-0998.12433
  18. Evans, N.T., Y. Li, M.A. Renshaw, B.P. Olds, K. Deiner, C.R. Turner, C.L. Jerde, D.M. Lodge, G.A. Lamberti and M.E. Pfrender. 2017. Fish community assessment with eDNA metabarcoding: effects of sampling design and bioinformatic filtering. Canadian Journal of Fisheries and Aquatic Sciences 74: 1362-1374. https://doi.org/10.1139/cjfas2016-0306
  19. Ficetola, G.F., C. Miaud, F. Pompanon and P. Taberlet. 2008. Species detection using environmental DNA from water samples. Biology Letters 4: 423-425. https://doi.org/10.1098/rsbl.2008.0118
  20. Ficetola, G.F., J. Pansu, A. Bonin, E. Coissac, C. Giguet-Covex, M. De Barba, L. Gielly, C.M. Lopes, F. Boyer, F. Pompanon, G. Raye and P. Taberlet. 2015. Replication levels, false presences and the estimation of the presence/absence from eDNA metabarcoding data. Molecular Ecology Resources 15: 543-556. https://doi.org/10.1111/1755-0998.12338
  21. Field, J.G., K.R. Clarke and M. Warwick. 1982. A practical strategy for analyzing multi-species distribution patterns. Marine Ecology Progress Series 8: 37-53. https://doi.org/10.3354/meps008037
  22. Fitzpatrick, M.C., E.L. Preisser, A.M. Ellison and J.S. Elkinton. 2009. Observer bias and the detection of low-density populations. Ecological Applications 19: 1673-1679. https://doi.org/10.1890/09-0265.1
  23. Fujii, K., H. Doi, S. Matsuoka, M. Nagano, H. Sato and H. Yamanaka. 2019. Environmental DNA metabarcoding for fish community analysis in backwater lakes: a comparison of capture methods. PLoS ONE 14: e0210357. https://doi.org/10.1371/journal.pone.0210357
  24. Goldberg, C.S., C.R. Turner, K. Deiner, K.E. Klymus, P.F. Thomsen, M.A. Murphy, S.F. Spear, A. McKee, S.J. Oyler-McCance, R.S. Cornman, M.B. Laramie, A.R. Mahon, R.F. Lance, D.S. Pilliod, K.M. Strickler, L.P. Waits, A.K. Fremier, T. Takahara, J.E. Herder and P. Taberlet. 2016. Critical considerations for the application of environmental DNA methods to detect aquatic species. Methods in Ecology and Evolution 7: 1299-1307. https://doi.org/10.1111/2041-210X.12595
  25. Grealy, A.C., M.C. McDowell, P. Scofield, D.C. Murray, D.A. Fusco, J. Haile, G.J. Prideaux and M. Bunce. 2015. A critical evaluation of how ancient DNA bulk bone metabarcoding complements traditional morphological analysis of fossil assemblages. Quaternary Science Reviews 128: 37-47. https://doi.org/10.1016/j.quascirev.2015.09.014
  26. Hinlo, R., D. Gleeson, M. Lintermans and E. Furlan. 2017. Methods to maximise recovery of environmental DNA from water samples. PLoS ONE 12: e0179251. https://doi.org/10.1371/journal.pone.0179251
  27. Kelly, R.P., J.A. Port, K.M. Yamahara, R.G. Martone, N. Lowell, P.F. Thomsen, M.E. Mach, M. Bennett, E. Prahler, M.R. Caldwell and L.B. Crowder. 2014. Harnessing DNA to improve environmental management. Science 344: 1455-1456. https://doi.org/10.1126/science.1251156
  28. Knudsen, S.W., R.B. Ebert, M. Hesselsoe, F. Kuntke, J. Hassingboe, P.B. Mortensen, P.F. Thomsen, E.E. Sigsgaard, B.K. Hansen, E.E. Nielsen and P.R. Moller. 2019. Species-specific detection and quantification of environmental DNA from marine fishes in the Baltic Sea. Journal of Experimental Marine Biology and Ecology 510: 31-45. https://doi.org/10.1016/j.jembe.2018.09.004
  29. Kumar, G., J.E. Eble and M.R. Gaither. 2019. A practical guide to sample preservation and pre-PCR processing of aquatic environmental DNA. Molecular Ecology Resources 20: 29-39. https://doi.org/10.1111/1755-0998.13107
  30. Martin, M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17: 10-12. https://doi.org/10.14806/ej.17.1.200
  31. Minamoto, T., H. Yamanaka, T. Takahara, M.N. Honjo and Z. Kawabata. 2012. Surveillance of fish species composition using environmental DNA. Limnology 13: 193-197. https://doi.org/10.1007/s10201-011-0362-4
  32. Minamoto, T., K. Hayami, M.K. Sakata and A. Imamura. 2019. Real-time polymerase chain reaction assays for environmental DNA detection of three salmonid fish in Hokkaido, Japan: Application to winter surveys. Ecological Research 34: 237-242. https://doi.org/10.1111/1440-1703.1018
  33. Miya, M., Y. Sato, T. Fukunaga, T. Sado, J.Y. Poulsen, K. Sato, T. Minamoto, S. Yamamoto, H. Yamanaka, H. Araki, M. Kondoh and W. Iwasaki. 2015. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. Royal Society Open Science 7: https://doi.org/10.1098/rsos.150088
  34. Oliver, I. and A.J. Beattie. 1993. A possible method for the rapid assessment of biodiversity. Conservation Biology 7: 562-568. https://doi.org/10.1046/j.1523-1739.1993.07030562.x
  35. Ruppert, K.M., R.J. Kline and M.S. Rahman. 2019. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: A systematic review in methods, monitoring, and applications of global eDNA. Global Ecology and Conservation 17: e00547. https://doi.org/10.1016/j.gecco.2019.e00547
  36. Sarmento-Soares, L.M. and R.F. Martins-Pinheiro. 2008. A systematic revision of Tatia (Siluriformes: Auchenipteridae: Centromochlinae). Neotropical Ichthyology 6: 495-542. https://doi.org/10.1590/S1679-62252008000300022
  37. Schmelzle, M.C. and A.P. Kinziger. 2016. Using occupancy modelling to compare environmental DNA to traditional field methods for regional-scale monitoring of an endangered aquatic species. Molecular Ecology Resources 16: 895-908. https://doi.org/10.1111/1755-0998.12501
  38. Schrader, C., A. Schielke, L. Ellerbroek and R. Johne. 2012. PCR inhibitors-occurrence, properties and removal. Journal of Applied Microbiology 113: 1014-1026. https://doi.org/10.1111/j.1365-2672.2012.05384.x
  39. Seymour, M., I. Durance, B.J. Cosby, E. Ransom-Jones, K. Deiner, S.J. Ormerod, J.K. Colbourne, G. Wilgar, G.R. Carvalho and M. de Bruyn. 2018. Acidity promotes degradation of multispecies environmental DNA in lotic mesocosms. Communications Biology 1: 4. https://doi.org/10.1038/s42003-017-0005-3
  40. Shu, L., A. Ludwig and Z. Peng. 2020. Standards for methods utilizing environmental DNA for detection of fish species. Genes 11: 296. https://doi.org/10.3390/genes11030296
  41. Simpfendorfer, C.A., P.M. Kyne, T.H. Noble, J. Goldsbury, R.K. Basiita, R. Lindsay, A. Shields, C. Perry and D.R. Jerry. 2016. Environmental DNA detects critically endangered largetooth sawfish in the wild. Endangered Species Research 30: 109-116. https://doi.org/10.3354/esr00731
  42. Stoeckle, B.C., S. Beggel, A.F. Cerwenka, E. Motivans, R. Kuehn R and J. Geist. 2017. A systematic approach to evaluate the influence of environmental conditions on eDNA detection success in aquatic ecosystems. PloS ONE 12: e0189119. https://doi.org/10.1371/journal.pone.0189119
  43. Taberlet, P., E. Coissac, M. Hajibabaei and L.H. Rieseberg. 2012. Environmental DNA. Molecular Ecology 21: 1789-1793. https://doi.org/10.1111/j.1365-294X.2012.05542.x
  44. Taberlet, P., A. Bonin, L. Zinger and E. Coissac. 2018. Environmental DNA: For Biodiversity Research and Monitoring. Oxford University Press, Oxford.
  45. Takahara, T., T. Minamoto, H. Yamanaka, H. Doi and Z. Kawabata. 2012. Estimation of fish biomass using environmental DNA. PLoS ONE 7: e35868. https://doi.org/10.1371/journal.pone.0035868
  46. Takahara, T., T. Minamoto and H. Doi. 2013. Using environmental DNA to estimate the distribution of an invasive fish species in ponds. PLoS ONE 8: e56584. https://doi.org/10.1371/journal.pone.0056584
  47. Tsuji, S., M. Ushio, S. Sakurai, T. Minamoto and H. Yamanaka. 2017. Water temperature-dependent degradation of environmental DNA and its relation to bacterial abundance. PLoS ONE 12: e0176608. https://doi.org/10.1371/journal.pone.0176608
  48. Tsuji, S., T. Takahara, H. Doi, N. Shibata and H. Yamanaka. 2019. The detection of aquatic macroorganisms using environmental DNA analysis - A review of methods for collection, extraction, and detection. Environmental DNA 1: 99-108. https://doi.org/10.1002/edn3.21
  49. Vasselon, V., I. Domaizon, F. Rimet, M. Kahlert and A. Bouchez. 2017. Application of high-throughput sequencing (HTS) metabarcoding to diatom biomonitoring: Do DNA extraction methods matter? Freshwater Science 36: 162-177. https://doi.org/10.1086/690649
  50. Wang, S., Z. Yan, B. Hanfling, X. Zheng, P. Wang, J. Fan and J. Li. 2021. Methodology of fish eDNA and its applications in ecology and environment. Science of the Total Environment 755: 1-17. https://doi.org/10.1016/j.scitotenv.2020.142622
  51. Weltz, K., J.M. Lyle, J. Ovenden, J.A.T. Morgan and D.A. Moreno. 2017. Application of environmental DNA to detect an endangered marine skate species in the wild. PLoS ONE 12: e0178124. https://doi.org/10.1371/journal.pone.0178124
  52. Zhang, S., J. Zhao and M. Yao. 2020. A comprehensive and comparative evaluation of primers for metabarcoding eDNA from fish. Methods in Ecology and Evolution 11: 1609-1625. https://doi.org/10.1111/2041-210X.13485