DOI QR코드

DOI QR Code

Recent Research Trend in Synthesis of Two-Dimensional Graphene through Interface Engineering

계면 제어를 통한 2차원 그래핀 성장의 최근 연구 동향

  • Lee, Seung Goo (Department of Chemistry, University of Ulsan) ;
  • Lee, Eunho (Department of Chemical Engineering, Kumoh National Institute of Technology)
  • 이승구 (울산대학교 화학과) ;
  • 이은호 (금오공과대학교 화학소재공학부 화학공학전공)
  • Received : 2021.08.15
  • Accepted : 2021.09.18
  • Published : 2021.09.30

Abstract

Graphene has been received a lot of attention as essential parts of future electronic and energy devices. Because of its extraordinary properties contributed from the atomic layer, the interface and surface engineering of graphene are promising approaches for realizing 2D materials-based high-performance devices. Herein, we summarize and introduce recent research trends of the synthesis of graphene through interface engineering for high-performance electronic and energy device applications, and then discuss the challenges and opportunities for achieving high-performance devices in next-generation electronics.

2 차원 소재인 그래핀은 미래 고성능 전자소자 및 에너지소자의 핵심 부품으로 많은 주목을 받고 있다. 특히, 매우 얇은 원자 한 층을 지닌 그래핀은 우수한 전기적, 기계적 특성을 활용하기 위해 성장법이 매우 중요하다. 이를 위해 2 차원 소재의 계면 및 표면 제어는 고성능 전자소자를 구현하기 위한 유망한 접근 방식이다. 본 논문에서는 계면제어를 통한 그래핀의 성장에 대한 최근 연구동향을 요약 및 소개하고, 차세대 전자 장치에서 고성능 장치를 구현하기위한 과제와 기회에 대해 깊이 논의하고자 한다.

Keywords

Acknowledgement

본 연구는 한국연구재단의 기초연구사업 (과제번호: NRF-2019R1F1A1062864, NRF-2021R1F1A 1056354, NRF-2021R1G1A1093058)의 지원을 받아 수행되었으며, 이에 감사드립니다.

References

  1. I.V.G ., A.A.F. K. S. Novoselov, A. K. G eim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, Science, 306, 666 (2004). https://doi.org/10.1126/science.1102896
  2. R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Science, 320, 1308 (2008). https://doi.org/10.1126/science.1156965
  3. C. Lee, X. Wei, J.W. Kysar, J. Hone, Science, 321, 385 (2008). https://doi.org/10.1126/science.1157996
  4. K. Noveoselv, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I. Grigorieva, S. Dubonos, A.A. Firsov, Nature, 438, 197 (2015). https://doi.org/10.1038/nature04233
  5. J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, S. Roth, Nature, 446, 60 (2007). https://doi.org/10.1038/nature05545
  6. J.H. Chen, C. Jang, S. Adam, M.S. Fuhrer, E.D. Williams, M. Ishigami, Nature Physics, 4, 377 (2008). https://doi.org/10.1038/nphys935
  7. S. Park, R.S. Ruoff, Chemical methods for the production of graphenes, Nature Nanotechnology, 4, 217 (2009). https://doi.org/10.1038/nnano.2009.58
  8. K. v. Emtsev, A. Bostwick, K. Horn, J. Jobst, G.L. Kellogg, L. Ley, J.L. McChesney, T. Ohta, S.A. Reshanov, J. Rohrl, E. Rotenberg, A.K. Schmid, D. Waldmann, H.B. Weber, T. Seyller, Nature Materials, 8, 203 (2009). https://doi.org/10.1038/nmat2382
  9. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, R.S. Ruoff, Science, 324, 1312 (2009). https://doi.org/10.1126/science.1171245
  10. Q. Yu, J. Lian, S. Siriponglert, H. Li, Y.P. Chen, S.S. Pei, Applied Physics Letters, 93, 1 (2008).
  11. C. Film, H. Ago, Y. Ito, N. Mizuta, K. Yoshida, B. Hu, C.M. Orofeo, ACS Nano, 4, 7407 (2010). https://doi.org/10.1021/nn102519b
  12. H.H. Kim, J.W. Yang, S.B. Jo, B. Kang, S.K. Lee, H. Bong, G . Lee, K.S. Kim, K. Cho, ACS Nano, 7, 1155 (2013). https://doi.org/10.1021/nn306012p
  13. H.H. Kim, S.K. Lee, S.G. Lee, E. Lee, K. Cho, Advanced Functional Materials, 26, 2070 (2016). https://doi.org/10.1002/adfm.201504551
  14. H.H. Kim, Y. Chung, E. Lee, S.K. Lee, K. Cho, Advanced Materials, 26, 3213 (2014). https://doi.org/10.1002/adma.201305940
  15. A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S.K. Saha, U. v. Waghmare, K.S. Novoselov, H.R. Krishnamurthy, A.K. Geim, A.C. Ferrari, A.K. Sood, Nature Nanotechnology, 3, 210 (2008). https://doi.org/10.1038/nnano.2008.67
  16. C.Y. Su, A.Y. Lu, C.Y. Wu, Y. te Li, K.K. Liu, W. Zhang, S.Y. Lin, Z.Y. Juang, Y.L. Zhong, F.R. Chen, L.J. Li, Nano Letters, 11, 3612 (2011). https://doi.org/10.1021/nl201362n
  17. Z. Liu, L. Song, S. Zhao, J. Huang, L. Ma, J. Zhang, J. Lou, P.M. Ajayan, Nano Letters, 11, 2032 (2011). https://doi.org/10.1021/nl200464j
  18. J. Kwak, J.H. Chu, J.K. Choi, S.D. Park, H. Go, S.Y. Kim, K. Park, S.D. Kim, Y.W. Kim, E. Yoon, S. Kodambaka, S.Y. Kwon, Nature Communications, 3, (2012).
  19. S. Tang, H. Wang, H.S. Wang, Q. Sun, X. Zhang, C. Cong, H. Xie, X. Liu, X. Zhou, F. Huang, X. Chen, T. Yu, F. Ding, X. Xie, M. Jiang, Nature Communications, 6, 1 (2015).
  20. J.S. Speck, Journal of Applied Physics, 67, 495 (1990). https://doi.org/10.1063/1.345231
  21. W. Zhang, P. Wu, Z. Li, J. Yang, Journal of Physical Chemistry C, 115, 17782 (2011). https://doi.org/10.1021/jp2006827
  22. H. Mehdipour, K. Ostrikov, ACS Nano, 6, 10276 (2012). https://doi.org/10.1021/nn3041446
  23. D.H. Jung, C. Kang, M. Kim, H. Cheong, H. Lee, J.S. Lee, The Journal of Physical Chemistry C, 118, 3574 (2014). https://doi.org/10.1021/jp410961m
  24. M. Qi, Z. Ren, Y. Jiao, Y. Zhou, X. Xu, W. Li, J. Li, X. Zheng, J. Bai, Journal of Physical Chemistry C, 117, 14348 (2013). https://doi.org/10.1021/jp403410b
  25. X. Li, W. Cai, L. Colombo, R.S. Ruoff, Nano Letters, 9, 4268 (2009). https://doi.org/10.1021/nl902515k
  26. E. Lee, S.G. Lee, K. Cho, Chemistry of Materials, 31, 4451 (2019). https://doi.org/10.1021/acs.chemmater.9b00948
  27. E. Lee, S.G. Lee, W.H. Lee, H.C. Lee, N.N. Nguyen, M.S. Yoo, K. Cho, Chemistry of Materials, 32, 4544 (2020). https://doi.org/10.1021/acs.chemmater.0c00503
  28. E. Lee, S.G. Lee, H.C. Lee, M. Jo, M.S. Yoo, K. Cho, Advanced Materials, 30, 1 (2018).
  29. M.P. Levendorf, C.S. Ruiz-Vargas, S. Garg, J. Park, Nano Letters, 9, 4479 (2009). https://doi.org/10.1021/nl902790r
  30. A. Ismach, C. Druzgalski, S. Penwell, A. Schwartzberg, M. Zheng, A. Javey, J. Bokor, Y. Zhang, Nano Letters, 10, 1542 (2010). https://doi.org/10.1021/nl9037714
  31. M. Marchena, D. Janner, T.L. Chen, V. Finazzi, V. Pruneri, Optical Materials Express, 6, 2487 (2016). https://doi.org/10.1364/OME.6.002487
  32. Z. Sun, Z. Yan, J. Yao, E. Beitler, Y. Zhu, J.M. Tour, Nature, 468, 549 (2010). https://doi.org/10.1038/nature09579
  33. Y.J. Kim, S.J. Kim, M.H. Jung, K.Y. Choi, S. Bae, S.K. Lee, Y. Lee, D. Shin, B. Lee, H. Shin, M. Choi, K. Park, J.H. Ahn, B.H. Hong, Nanotechnology, 23, 344016 (2012). https://doi.org/10.1088/0957-4484/23/34/344016
  34. H.K. Seo, K. Kim, S.Y. Min, Y. Lee, C.E. Park, R. Raj, T.W. Lee, 2D Materials, 4, 024001 (2017). https://doi.org/10.1088/2053-1583/aa5408
  35. J. Mischke, J. Pennings, E. Weisenseel, P. Kerger, M. Rohwerder, W. Mertin, G. Bacher, 2D Materials, 7, 035019 (2020). https://doi.org/10.1088/2053-1583/ab8969