DOI QR코드

DOI QR Code

Transcriptome Analysis and Expression Profiling of Molecular Responses to Cd Toxicity in Morchella spongiola

  • Xu, Hongyan (College of Eco-Environmental Engineering, Qinghai University) ;
  • Xie, Zhanling (College of Eco-Environmental Engineering, Qinghai University) ;
  • Jiang, Hongchen (State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences) ;
  • Guo, Jing (College of Eco-Environmental Engineering, Qinghai University) ;
  • Meng, Qing (College of Eco-Environmental Engineering, Qinghai University) ;
  • Zhao, Yuan (College of Eco-Environmental Engineering, Qinghai University) ;
  • Wang, Xiaofang (College of Eco-Environmental Engineering, Qinghai University)
  • Received : 2021.02.08
  • Accepted : 2021.05.28
  • Published : 2021.08.31

Abstract

Morchella is a genus of fungi with the ability to concentrate Cd both in the fruit-body and mycelium. However, the molecular mechanisms conferring resistance to Cd stress in Morchella are unknown. Here, RNA-based transcriptomic sequencing was used to identify the genes and pathways involved in Cd tolerance in Morchella spongiola. 7444 differentially expressed genes (DEGs) were identified by cultivating M. spongiola in media containing 0.15, 0.90, or 1.50 mg/L Cd2+. The DEGs were divided into six sub-clusters based on their global expression profiles. GO enrichment analysis indicated that numerous DEGs were associated with catalytic activity, cell cycle control, and the ribosome. KEGG enrichment analysis showed that the main pathways under Cd stress were MAPK signaling, oxidative phosphorylation, pyruvate metabolism, and propanoate metabolism. In addition, several DEGs encoding ion transporters, enzymatic/non-enzymatic antioxidants, and transcription factors were identified. Based on these results, a preliminary gene regulatory network was firstly proposed to illustrate the molecular mechanisms of Cd detoxification in M. spongiola. These results provide valuable insights into the Cd tolerance mechanism of M. spongiola and constitute a robust foundation for further studies on detoxification mechanisms in macrofungi that could potentially lead to the development of new and improved fungal bioremediation strategies.

Keywords

Acknowledgement

This work was supported by the Natural Science Planning of Qinghai Province [2021-HZ-802] and Science and Technology Innovation Project of Qinghai University [2019-QH-16].

References

  1. Tomza-Marciniak A, Pilarczyk B, Marciniak A, et al. Cadmium, Cd. In: Kalisim, C E, editor. Mammals and birds as bioindicators of trace element contaminations in terrestrial environments. Cham (Switzerland): Springer; 2019. p. 483-532.
  2. Tang J, Zhang J, Ren L, et al. Diagnosis of soil contamination using microbiological indices: a review on heavy metal pollution. J Environ Manage. 2019;242:121-130. https://doi.org/10.1016/j.jenvman.2019.04.061
  3. Ma H, Li X, Hou S, et al. The activation and extraction systems using organic acids and Lentinus edodes to remediate cadmium contaminated soil. Environ Pollut. 2019;255:113252. https://doi.org/10.1016/j.envpol.2019.113252
  4. Stoknes K, Scholwin F, Jasinska A, et al. Cadmium mobility in a circular food-to-waste-to-food system and the use of a cultivated mushroom (Agaricus subrufescens) as a remediation agent. J Environ Manage. 2019;245:48-54. https://doi.org/10.1016/j.jenvman.2019.03.134
  5. Damodaran D, Vidya Shetty K, Raj Mohan B. Effect of chelaters on bioaccumulation of Cd (II), Cu (II), Cr (VI), Pb (II) and Zn (II) in Galerina vittiformis from soil. Int Biodeterior Biodegrad. 2013;85:182-188. https://doi.org/10.1016/j.ibiod.2013.05.031
  6. Ali A, Guo D, Mahar A, et al. Mycoremediation of potentially toxic trace elements-a biological tool for soil cleanup: a review. Pedosphere. 2017;27(2): 205-222. https://doi.org/10.1016/s1002-0160(17)60311-4
  7. Gao Y, Wang Y, Qian J, et al. Melatonin enhances the cadmium tolerance of mushrooms through antioxidant-related metabolites and enzymes. Food Chem. 2020;330:127263. https://doi.org/10.1016/j.foodchem.2020.127263
  8. Melgar MJ, Alonso J, Garcia MA. Cadmium in edible mushrooms from NW Spain: bioconcentration factors and consumer health implications. Food Chem Toxicol. 2016;88:13-20. https://doi.org/10.1016/j.fct.2015.12.002
  9. Dukic-Cosic D, Baralic K, Javorac D, et al. An overview of molecular mechanisms in cadmium toxicity. Curr Opin Toxicol. 2020;19:56-62. https://doi.org/10.1016/j.cotox.2019.12.002
  10. Chi Y, Huang Y, Wang J, et al. Two plant growth promoting bacterial Bacillus strains possess different mechanisms in adsorption and resistance to cadmium. Sci Total Environ. 2020;741:140422. https://doi.org/10.1016/j.scitotenv.2020.140422
  11. Xia X, Wu S, Zhou Z, et al. Microbial Cd(II) and Cr(VI) resistance mechanisms and application in bioremediation. J Hazard Mater. 2021;401:123685. https://doi.org/10.1016/j.jhazmat.2020.123685
  12. Gursoy N, Sarikurkcu C, Cengiz M, et al. Antioxidant activities, metal contents, total phenolics and flavonoids of seven Morchella species. Food Chem Toxicol. 2009;47(9):2381-2388. https://doi.org/10.1016/j.fct.2009.06.032
  13. Isildak O, Turkekul I, Elmastas M, et al. Analysis of heavy metals in some wild-grown edible mushrooms from the middle black sea region, Turkey. Food Chem. 2004;86(4):547-552. https://doi.org/10.1016/j.foodchem.2003.09.007
  14. Liu B, Huang Q, Cai H, et al. Study of heavy metal concentrations in wild edible mushrooms in Yunnan Province, China. Food Chem. 2015;188: 294-300. https://doi.org/10.1016/j.foodchem.2015.05.010
  15. Ozturk I, Sahan S, Sahin U, et al. Bioactivity and mineral contents of wild-grown edible Morchella conica in the Mediterranean Region. J Verbr Lebensm. 2010;5(3-4):453-457. https://doi.org/10.1007/s00003-010-0625-8
  16. An X, Zhou Q, Li T. Growth and enrichment response of Morchella esculenta hyphae to single and combined pollution of Cd and Pb. J Basic Sci Eng. 2008;16:35-42. https://doi.org/10.3969/j.issn.1005-0930.2008.01.005
  17. Zhang N, Zhao M, Xie J, et al. Tolerance of Morchella importuna towards heavy metals. Mycosystema. 2017;36:367-375.
  18. Lu J, Ma Y, Xing G, et al. Revelation of microalgae's lipid production and resistance mechanism to ultra-high Cd stress by integrated transcriptome and physiochemical analyses. Environ Pollut. 2019; 250:186-195. https://doi.org/10.1016/j.envpol.2019.04.018
  19. Liu J-J, Sturrock R, Ekramoddoullah AKM. The superfamily of thaumatin-like proteins: its origin, evolution, and expression towards biological function. Plant Cell Rep. 2010;29(5):419-436. https://doi.org/10.1007/s00299-010-0826-8
  20. Mandal SK, Adhikari R, Sharma A, et al. Designating ligand specificities to metal uptake ABC transporters in Thermus thermophilus HB8. Metallomics. 2019;11(3):597-612. https://doi.org/10.1039/c8mt00374b
  21. Theodoulou Frederica L, Kerr ID. ABC transporter research: going strong 40 years on. Biochem Soc Trans. 2015;43(5):1033-1040. https://doi.org/10.1042/BST20150139
  22. Schweigel-Rontgen M. The families of zinc (SLC30 and SLC39) and copper (SLC31) transporters. Curr Top Membr. 2014;73:321-355. https://doi.org/10.1016/B978-0-12-800223-0.00009-8
  23. Khan Z, Rehman A, Nisar MA, et al. Biosorption behavior and proteomic analysis of Escherichia coli P4 under cadmium stress. Chemosphere. 2017;174: 136-147. https://doi.org/10.1016/j.chemosphere.2017.01.132
  24. Li C, Xu Y, Li L, et al. Acid stress induces crossprotection for cadmium tolerance of multi-stresstolerant Pichia kudriavzevii by regulating cadmium transport and antioxidant defense system. J Hazard Mater. 2019;366:151-159. https://doi.org/10.1016/j.jhazmat.2018.11.101
  25. Shen M, Zhao D-K, Qiao Q, et al. Identification of glutathione S-transferase (GST) genes from a dark septate endophytic fungus (Exophiala pisciphila) and their expression patterns under varied metals stress. PLoS One. 2015;10(4):e0123418. https://doi.org/10.1371/journal.pone.0123418
  26. Tiwari S, Thakur R, Shankar J. Role of heat-shock proteins in cellular function and in the biology of fungi. Biotechnol Res Int. 2015;2015:1-11. https://doi.org/10.1155/2015/132635
  27. Cao GH, He S, Chen D. EpABC genes in the adaptive responses of Exophiala pisciphila to metal stress: functional importance and relation to metal tolerance. Appl Environ Microbiol. 2019;85(23): e01844-19.
  28. Porcheron G, Garenaux A, Proulx J, et al. Iron, copper, zinc, and manganese transport and regulation in pathogenic Enterobacteria: correlations between strains, site of infection and the relative importance of the different metal transport systems for virulence. Front Cell Infect Microbiol. 2013;3:90.
  29. Trofimova DN, Deeley RG. Structural studies of multidrug resistance protein 1 using "almost" cysless template. Drug Metab Dispos. 2018;46(6): 794-804. https://doi.org/10.1124/dmd.117.078709
  30. Prasad R, Kapoor K. Multidrug resistance in yeast Candida. Int Rev Cytol. 2005;242:215-248. https://doi.org/10.1016/S0074-7696(04)42005-1
  31. Portnoy ME, Schmidt PJ, Rogers RS, et al. Metal transporters that contribute copper to metallochaperones in Saccharomyces cerevisiae. Mol Genet Genomics. 2001;265(5):873-882. https://doi.org/10.1007/s004380100482
  32. Zhang P, Zhang D, Zhao X, et al. Effects of CTR4 deletion on virulence and stress response in Cryptococcus neoformans. Antonie van Leeuwenhoek. 2016;109(8):1081-1090. https://doi.org/10.1007/s10482-016-0709-2
  33. Hamza I, Faisst A, Prohaska J, et al. The metallochaperone Atox1 plays a critical role in perinatal copper homeostasis. PNAS. 2001;98(12): 6848-6852. https://doi.org/10.1073/pnas.111058498
  34. Hamza I, Prohaska AJ, Gitlin DJ. Essential role for Atox1 in the copper-mediated intracellular trafficking of the Menkes ATPase. PNAS. 2003;100(3): 1215-1220. https://doi.org/10.1073/pnas.0336230100
  35. Kim DW, Shin MJ, Choi YJ, et al. Tat-ATOX1 inhibits inflammatory responses via regulation of MAPK and NF-jB pathways. BMB Rep. 2018; 51(12):654-659. https://doi.org/10.5483/BMBRep.2018.51.12.248
  36. Kim Y-J, Bond GJ, Tsang T, et al. Copper chaper-one ATOX1 is required for MAPK signaling and growth in BRAF mutation-positive melanoma. Metallomics. 2019;11(8):1430-1440. https://doi.org/10.1039/c9mt00042a
  37. Li S, Liu X, Zhou X, et al. Improving zinc and iron accumulation in maize grains using the zinc and iron transporter ZmZIP5. Plant Cell Physiol. 2019;60(9):2077-2085. https://doi.org/10.1093/pcp/pcz104
  38. Yang Y, Pan Y, Liu G, et al. Glycerol transporter 1 (Gt1) and zinc-regulated transporter 1 (Zrt1) function in different modes for zinc homeostasis in Komagataella phaffii (Pichia pastoris). Biotechnol Lett. 2020;42(11):2413-2423. https://doi.org/10.1007/s10529-020-02964-4
  39. Taggart J, Wang Y, Weisenhorn E, et al. The GIS2 gene is repressed by a zinc-regulated bicistronic RNA in Saccharomyces cerevisiae. Genes. 2018; 9(9):462. https://doi.org/10.3390/genes9090462
  40. Li C, Jiang W, Ma N, et al. Bioaccumulation of cadmium by growing Zygosaccharomyces rouxii and Saccharomyces cerevisiae. Bioresour Technol. 2014;155:116-121. https://doi.org/10.1016/j.biortech.2013.12.098
  41. Ullah I, Al-Johny BO, Al-Ghamdi KMS, et al. Endophytic bacteria isolated from Solanum nigrum L., alleviate cadmium (Cd) stress response by their antioxidant potentials, including SOD synthesis by sodA gene. Ecotoxicol Environ Saf. 2019;174: 197-207. https://doi.org/10.1016/j.ecoenv.2019.02.074
  42. Zeng Q, Ling Q, Hu F, et al. Genotypic differences in growth and antioxidant enzyme activities under cadmium stress in sugarcane. Bull Environ Contam Toxicol. 2017;99(5):607-613. https://doi.org/10.1007/s00128-017-2185-4
  43. Wang C, Zhao J, Mu C, et al. cDNA cloning and mRNA expression of four glutathione S-transferase (GST) genes from Mytilus galloprovincialis. Fish Shellfish Immunol. 2013;34(2):697-703. https://doi.org/10.1016/j.fsi.2012.11.020
  44. Wang H, Wu P, Liu J, et al. The regulatory mechanism of chryseobacterium sp. resistance mediated by montmorillonite upon cadmium stress. Chemosphere. 2019;240:124851. https://doi.org/10.1016/j.chemosphere.2019.124851
  45. Aksmann A, Pokora W, Bascik-Remisiewicz A, et al. Time-dependent changes in antioxidative enzyme expression and photosynthetic activity of Chlamydomonas reinhardtii cells under acute exposure to cadmium and anthracene. Ecotoxicol Environ Saf. 2014;110:31-40. https://doi.org/10.1016/j.ecoenv.2014.08.005
  46. Liu X, Pan G. Drug transporters in drug disposition, effects and toxicity. In: Liu X, Pan G, editors. Advances in experimental medicine and biology. Singapore: Springer; 2019.
  47. Miersch J, Grancharov K. Cadmium and heat response of the fungus Heliscus lugdunensis isolated from highly polluted and unpolluted areas. Amino Acids. 2008;34(2):271-277. https://doi.org/10.1007/s00726-006-0491-y
  48. Kaplan KB, Li R. A prescription for 'stress' - the role of Hsp90 in genome stability and cellular adaptation. Trends Cell Biol. 2012;22(11):576-583. https://doi.org/10.1016/j.tcb.2012.08.006
  49. Lamoth F, Juvvadi PR, Steinbach WJ. Heat shock protein 90 (Hsp90) in fungal growth and pathogenesis. Curr Fungal Infect Rep. 2014;8(4): 296-301. https://doi.org/10.1007/s12281-014-0195-9
  50. Wang K, Zhang X, Goatley M, et al. Heat shock proteins in relation to heat stress tolerance of creeping bentgrass at different N levels. PLoS One. 2014;9(7):e102914. https://doi.org/10.1371/journal.pone.0102914
  51. Lemaire S, Keryer E, Stein M, et al. Heavy-metal regulation of thioredoxin gene expression in chlamydomonas reinhardtii. Plant Physiol. 1999; 120(3):773-778. https://doi.org/10.1104/pp.120.3.773
  52. Gupta SD, Wu HC, Rick PD. A Salmonella typhimurium genetic locus which confers copper tolerance on copper-sensitive mutants of Escherichia coli. J Bacteriol. 1997;179(16):4977-4984. https://doi.org/10.1128/jb.179.16.4977-4984.1997
  53. Garbisu C, Ishii T, Leighton T, et al. Bacte, rial reduction of selenite to elemental selenium. Chem Geol. 1996;132(1-4):199-204. https://doi.org/10.1016/S0009-2541(96)00056-3
  54. Jaeckel P, Krauss G, Menge S, et al. Cadmium induces a novel metallothionein and phytochelatin 2 in an aquatic fungus. Biochem Biophys Res Commun. 2005;333(1):150-155. https://doi.org/10.1016/j.bbrc.2005.05.083
  55. Tucker SL, Thornton CR, Tasker K, et al. A fungal metallothionein is required for pathogenicity of Magnaporthe grisea. Plant Cell. 2004;16(6): 1575-1588. https://doi.org/10.1105/tpc.021279
  56. Potashkin J, Wentz-Hunter K, Callaci J. BTF3 is evolutionarily conserved in fission yeast. Biochim Biophys Acta. 1996;1308(3):182-184. https://doi.org/10.1016/0167-4781(96)00114-5
  57. Zhang Y, Gross N, Li Z, et al. Upregulation of BTF3 affects the proliferation, apoptosis, and cell cycle regulation in hypopharyngeal squamous cell carcinoma. Biomed Pharmacother. 2019;118: 109211. https://doi.org/10.1016/j.biopha.2019.109211
  58. Ding Y, Jia Y, Shi Y, et al. OST1-mediated BTF3L phosphorylation positively regulates CBFs during plant cold responses. EMBO J. 2018;37(8):e98228.
  59. Persak H, Pitzschke A. Tight interconnection and multi-level control of arabidopsis MYB44 in MAPK cascade signalling. PLoS One. 2013;8(2): e57547. https://doi.org/10.1371/journal.pone.0057547