DOI QR코드

DOI QR Code

Chemical and Mechanical Sustainability of Silver Tellurite Glass Containing Radioactive Iodine-129

  • Lee, Cheong Won (Pohang University of Science and Technology (POSTECH)) ;
  • Kang, Jaehyuk (Pohang University of Science and Technology (POSTECH)) ;
  • Kwon, Yong Kon (Pohang University of Science and Technology (POSTECH)) ;
  • Um, Wooyong (Pohang University of Science and Technology (POSTECH)) ;
  • Heo, Jong (Pohang University of Science and Technology (POSTECH))
  • Received : 2021.07.06
  • Accepted : 2021.08.10
  • Published : 2021.09.30

Abstract

Silver tellurite glasses with melting temperature of approximately 700℃ were developed to immobilize 129I wastes. Long-term dissolution tests in 0.1 M acetic acid and disposability assessment were conducted to evaluate sustainability of the glasses. Leaching rate of Te, Bi and I from the glasses decreased for up to 16 d, then remained stable afterwards. On the contrary, tens to tens of thousands of times more of Ag was leached in comparison to the other elements; additionally, Ag leached continuously for all 128 d of the test owing to the exchange of Ag+ and H+ ions between the glasses and solution. The I leached much lower than those of other elements even though it leached ~10 times more in 0.1 M acetic acid than in deionized water. Some TeO4 units in the glass network were transformed to TeO3 by ion exchange and hydrolysis. These silver tellurite glasses met all waste acceptance criteria for disposal in Korea.

Keywords

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2019M2A7A1001811).

References

  1. D.R. Haefner and T.J. Tranter. Methods of Gas Phase Capture of Iodine From Fuel Reprocessing Off-Gas: A Literature Survey, Idaho National Laboratory Report, INL/EXT-07-12299 (2007).
  2. H.S. Lee, G.I. Park, K.H. Kang, J.M. Hur, J.G. Kim, D.H. Ahn, Y.Z. Cho, and E.H. Kim, "Pyroprocessing Technology Development at KAERI", Nucl. Eng. Technol., 43(4), 317-328 (2011). https://doi.org/10.5516/NET.2011.43.4.317
  3. J.H. Yoo, C.S. Seo, E.H. Kim, and H.S. Lee, "A Conceptual Study of Pyroprocessing for Recovering Actinides From Spent Oxide Fuels", Nucl. Eng. Technol., 40(7), 581-592 (2008). https://doi.org/10.5516/NET.2008.40.7.581
  4. B.J. Riley, J.D. Vienna, D.M. Strachan, J.S. McCloy, and J.L. Jerden Jr., "Materials and Processes for the Effective Capture and Immobilization of Radioiodine: A Review", J. Nucl. Mater., 470, 307-326 (2016). https://doi.org/10.1016/j.jnucmat.2015.11.038
  5. B.J. Riley, M.J. Schweiger, D.S. Kim, W.W. Lukens Jr., B.D. Williams, C. Iovin, C.P. Rodriguez, N.R. Overman, M.E. Bowden, D.R. Dixon, J.V. Crum, J.S. McCloy, and A.A. Kruger, "Iodine Solubility in a Low-Activity Waste Borosilicate Glass at 1000℃", J. Nucl. Mater., 452(1-3), 178-188 (2014). https://doi.org/10.1016/j.jnucmat.2014.04.027
  6. C.W. Lee, J.Y. Pyo, H.S. Park, J.H. Yang, and J. Heo, "Immobilization and Bonding Scheme of Radioactive Iodine-129 in Silver Tellurite Glass", J. Nucl. Mater., 492, 239-243 (2017). https://doi.org/10.1016/j.jnucmat.2017.05.024
  7. F.G.F. Gibb, "High-temperature, Very Deep, Geological Disposal: A Safer Alternative for High-level Radioactive Waste?", Waste Manage., 19(3), 207-211 (1999). https://doi.org/10.1016/S0956-053X(99)00050-1
  8. P. Hrma, "Crystallization During Processing of Nuclear Waste Glass", J. Non-Cryst. Solids, 356(52-54), 3019-3025 (2010). https://doi.org/10.1016/j.jnoncrysol.2010.03.039
  9. K.H. Kim, Y.G. Yu, and T.G. Kim. Comparison of Various Standard Test Methods for Characterization of Radioactive Waste Forms, Korea Atomic Energy Research Institute Technical Report, KAERI/TR-3695/2008 (2008).
  10. ASTM International. Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM Report, ASTM C39 / C39M-21 (2018).
  11. ASTM International. Standard Test Method for Thermal Cycling of Electroplated Plastics, ASTM Report, ASTM B553 (1985).
  12. B. Boizot, N. Ollier, F. Olivier, G. Petite, D. Ghaleb, and E. Malchukova, "Irradiation Effects in Simplified Nuclear Waste Glasses", Nucl. Instrum. Methods Phys. Res. B, 240(1-2), 146-151 (2005). https://doi.org/10.1016/j.nimb.2005.06.105
  13. American National Standards Institute. Measurement of the Leachability of Solidified Low-Level Radioactive Wastes by a Short-Term Test Procedure, ANSI Report, ANSI/ANS-16.1-2019 (2019).
  14. United States Environmental Protection Agency. Test Method 1311: Toxicity Characteristic Leaching Procedure, part of Test Methods for Evaluating Solid Wastes, EPA Report, SW-846 (2003).
  15. R.K. Farnsworth, E.D. Larsen, J.W. Sears, T.L. Eddy, and G.L. Anderson. Chemical and Mechanical Performance Properties for Various Final Waste Forms-PSPI Scoping Study, Idaho National Engineering Laboratory Report, INEL-94/0099 (1996).
  16. S. Sakida, S. Hayakawa, and T. Yoko, "Part 2.125Te NMR Study of M2O-TeO2 (M= Li, Na, K, Rb and Cs) Glasses", J. Non-Cryst. Solids, 243(1), 13-25 (1999). https://doi.org/10.1016/S0022-3093(98)00812-6
  17. C. Yu, Q. Cai, Z.X. Guo, Z. Yang, and S.B. Khoo, "Simultaneous Speciation of Inorganic Selenium and Tellurium by Inductively Coupled Plasma Mass Spectrometry Following Selective Solid-phase Extraction Separation", J. Anal. At. Spectrom., 19, 410-413 (2004). https://doi.org/10.1039/b310318h
  18. B.V.R. Chowdari and P.P. Kumari, "Raman Spectroscopic Study of Ternary Silver Tellurite Glasses", Mater. Res. Bull., 34(2), 327-342 (1999). https://doi.org/10.1016/S0025-5408(99)00012-4
  19. J.D. Ghys, B. Piriou, S. Rossignol, J.M. Reau, B. Tanguy, J.J. Videau, and J. Portier, "Investigation by Raman Scattering of the [TeO2-RMO0.5](M= Ag or Tl) Glasses and of the Related Ionic Conductors [TeO2-RMO0.5]1-x)[AgI]x", J. Non-Cryst. Solids, 170, 167-174 (1994). https://doi.org/10.1016/0022-3093(94)90043-4
  20. B.V.R. Chowdari and P.P. Kumari, "Studies on Ag2O. MxOy. TeO2 (MxOy=WO3, MoO3, P2O5 and B2O3) Ionic Conducting Glasses", Solid State Ion., 113-115, 665-675 (1998). https://doi.org/10.1016/S0167-2738(98)00393-2
  21. B.V.R. Chowdari and P.P. Kumari, "Synthesis and Characterization of Silver Borotellurite Glasses", Solid State Ion., 86-88, Part 1, 521-526 (1996). https://doi.org/10.1016/0167-2738(96)00186-5
  22. B.V.R. Chowdari and P.P. Kumari, "Thermal, Electrical and XPS Studies of Ag2O.TeO2. P2O5 Glasses", J. Non-Cryst. Solids, 197(1), 31-40 (1996). https://doi.org/10.1016/0022-3093(95)00548-X
  23. B.V.R. Chowdari and P.P. Kumari, "Structure and Ionic Conduction in the Ag2O. WO3. TeO2 Glass System", J. Mater. Sci., 33, 3591-3599 (1998). https://doi.org/10.1023/A:1004651228203
  24. L. Dohmen, C. Lenting, R.O.C. Fonseca, T. Nagel, A. Heuser, T. Geisler, and R. Denkler, "Pattern Formation in Silicate Glass Corrosion Zones", Int. J. Appl. Glass Sci., 4(4), 357-370 (2013). https://doi.org/10.1111/ijag.12046
  25. S. Gin, P. Jollivet, M. Fournier, F. Angeli, P. Frugier, and T. Charpentier, "Origin and Consequences of Silicate Glass Passivation by Surface Layers", Nat. Commun., 6, 6360 (2015). https://doi.org/10.1038/ncomms7360
  26. C. Cailleteau, F. Angeli, F. Devreux, S. Gin, J. Jestin, P. Jollivet, and O. Spalla, "Insight Into Silicate-Glass Corrosion Mechanisms", Nat. Mater., 7, 978-983 (2008). https://doi.org/10.1038/nmat2301
  27. T. Geisler, T. Nagel, M.R. Kilburn, A. Janssen, J.P. Icenhower, R.O.C. Fonseca, M. Grange, and A.A. Nemchin, "The Mechanism of Borosilicate Glass Corrosion Revisited", Geochim. Cosmochim. Acta., 158, 112-129 (2015). https://doi.org/10.1016/j.gca.2015.02.039
  28. T. Geisler, A. Janssen, D. Scheiter, T. Stephan, J. Berndt, and A. Putnis, "Aqueous Corrosion of Borosilicate Glass Under Acidic Conditions: A New Corrosion Mechanism", J. Non-Cryst. Solids, 356(28-30), 1458-1465 (2010). https://doi.org/10.1016/j.jnoncrysol.2010.04.033
  29. R. Hellmann, S. Cotte, E. Cadel, S. Malladi, L.S. Karlsson, S.L. Perez, M. Cabie, and A. Seyeux, "Nanometre-scale Evidence for Interfacial Dissolution-Reprecipitation Control of Silicate Glass Corrosion", Nat. Mater., 14, 307-311 (2015). https://doi.org/10.1038/nmat4172
  30. D.M. Strachan and T.L. Croak, "Compositional Effects on Long-term Dissolution of Borosilicate Glass", J. Non-Cryst. Solids, 272(1), 22-33 (2000). https://doi.org/10.1016/S0022-3093(00)00154-X
  31. B.C. Bunker, G.W. Arnold, D.E. Day, and P.J. Bray, "The Effect of Molecular Structure on Borosilicate Glass Leaching", J. Non-Cryst. Solids, 87(1-2), 226-253 (1986). https://doi.org/10.1016/S0022-3093(86)80080-1