자동화된 머신러닝 기술 동향: AutoGluon 사례 분석

  • Published : 2021.09.30

Abstract

Keywords

References

  1. Xin He, Kaiyong Zhao, and Xiaowen Chu. AutoML: A survey of the state-of-the-art. Knowledge-Based Systems, Volume 212, 2021.
  2. Chris Thornton, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Auto-weka: Automated selection and hyper-parameter optimization of classification algorithms. CoRR, abs/1208.3719, 2012. URL http://arxiv.org/abs/1208.3719.
  3. Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and Ian Witten. The weka data mining software: An update. SIGKDD Explor. Newsl., 11:10-18, 11 2008.
  4. Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum, and Frank Hutter. Efficient and robust automated machine learning. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 28. Curran Associates, Inc., 2015. URL https://proceedings.neurips.cc/paper/2015/file/11d0e6287202fced83f79975ec59a3a6-Paper.pdf.
  5. Randal S. Olson, Nathan Bartley, Ryan J. Urbanowicz, and Jason H. Moore. Evaluation of a tree-based pipeline optimization tool for automating data science. CoRR, abs/1603.06212, 2016. URL http://arxiv.org/abs/1603.06212.
  6. Jonathan Krauss, Bruno Machado Pacheco, Hanno Maximilian Zang, and Robert Heinrich Schmitt. Automated machine learning for predictive quality in production. Procedia CIRP, 93:443-448, 2020. ISSN 2212-8271. doi: https://doi.org/10.1016/j.procir.2020.04.039. URL https://www.sciencedirect.com/science/article/pii/S2212827120306016. 53rd CIRP Conference on Manufacturing Systems 2020.
  7. Haifeng Jin, Qingquan Song, and Xia Hu. Efficient neural architecture search with network morphism. CoRR, abs/1806.10282, 2018. URL http://arxiv.org/abs/1806.10282.
  8. Erin LeDell and Sebastien Poirier. H2O AutoML: Scalable automatic machine learning. 7th ICML Workshop on Automated Machine Learning (AutoML), July 2020. URL https://www.automl.org/wp-content/uploads/2020/07/AutoML_2020_paper_61.pdf.
  9. H2O.ai. H2O AutoML, 2021. URL http://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html. H2O version 3.32. 1.2.
  10. Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang Zhang, Pedro Larroy, Mu Li, and Alexander Smola. Autogluon-tabular: Robust and accurate automl for structured data, 2020.
  11. Chaoyu Guan, Ziwei Zhang, Haoyang Li, Heng Chang, Zeyang Zhang, Yijian Qin, Jiyan Jiang, Xin Wang, and Wenwu Zhu. Autogl: A library for automated graph learning. CoRR, abs/2104.04987, 2021. URL https://arxiv.org/abs/2104.04987.