Optical Flow 추정 기술 및 최신 연구 동향

  • Published : 2021.09.30

Abstract

Keywords

References

  1. Lee, Byeong-Yun. "국내외 자율주행자동차 기술개발 동향과 전망." Information and Communications Magazine 33.4 (2016): 10-16.
  2. 강승준, "AI식별추적시스템구축 사업 의의와 성과", 정보통신산업진흥원 이슈리포트 제 20호 pp.4-5, 2020
  3. Deo, Nachiket, and Mohan M. Trivedi. "Learning and predicting on-road pedestrian behavior around vehicles." 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC). IEEE, 2017.
  4. Baqui, Muhammad, and Rainald Lohner. "Real-time crowd safety and comfort management from CCTV images." Real-Time Image and Video Processing 2017. Vol. 10223. International Society for Optics and Photonics, 2017.
  5. Fortun, Denis, Patrick Bouthemy, and Charles Kervrann. "Optical flow modeling and computation: A survey." Computer Vision and Image Understanding 134 (2015): 1-21. https://doi.org/10.1016/j.cviu.2015.02.008
  6. Horn, Berthold KP, and Brian G. Schunck. "Determining optical flow." Artificial intelligence 17.1-3 (1981): 185-203. https://doi.org/10.1016/0004-3702(81)90024-2
  7. Czirok, Andras, et al. "Optical-flow based non-invasive analysis of cardiomyocyte contractility." Scientific reports 7.1 (2017): 1-11. https://doi.org/10.1038/s41598-016-0028-x
  8. Nam, Tae-Jin, Rae-Hong Park, and Jae-Ho Yun. "Optical flow based frame interpolation of ultrasound images." International Conference Image Analysis and Recognition. Springer, Berlin, Heidelberg, 2006.
  9. Schmoderer, Timothee, et al. "Learning optical flow for fast MRI reconstruction." Inverse Problems (2021).
  10. 김영민, et al. "딥러닝과 Optical Flow 를 활용한 보행자 사고 방지 모델." 한국정보과학회 학술발표논문집 (2021): 1690-1692.
  11. Rateke, Thiago, and Aldo von Wangenheim. "Road obstacles positional and dynamic features extraction combining object detection, stereo disparity maps and optical flow data." Machine Vision and Applications 31.7 (2020): 1-11. https://doi.org/10.1007/s00138-019-01050-8
  12. 김지혜, et al. "Optical Flow 기반 CCTV 영상에서의 차량 통행량 및 통행 속도 추정에 관한 연구." 방송공학회논문지 22.4 (2017): 448-461. https://doi.org/10.5909/JBE.2017.22.4.448
  13. 권언혜, 노승종, and 전문구. "옵티컬 플로우 기반 장면 모델링을 통한 교통 영상 내의 이상 상황 인식 시스템." 한국정보처리학회 학술대회논문집 19.2 (2012): 488-491.
  14. 백종환, and 김상훈. "드론과 지상로봇 간의 협업을 위한 광학흐름 기반 마커 추적방법." 정보처리학회논문지. 소프트웨어 및 데이터 공학 7.3 (2018): 107-112.
  15. Urieva, Natallia, et al. "Collision Detection and Avoidance using Optical Flow for Multicopter UAVs." 2020 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, 2020.
  16. Lucas, Bruce D., and Takeo Kanade. "An iterative image registration technique with an application to stereo vision." 1981.
  17. Bouguet, Jean-Yves. "Pyramidal implementation of the affine lucas kanade feature tracker description of the algorithm." Intel corporation 5.1-10 (2001): 4.
  18. Farneback, Gunnar. "Two-frame motion estimation based on polynomial expansion." Scandinavian conference on Image analysis. Springer, Berlin, Heidelberg, 2003.
  19. Shi, Jianbo. "Good features to track." 1994 Proceedings of IEEE conference on computer vision and pattern recognition. IEEE, 1994.
  20. Dosovitskiy, Alexey, et al. "Flownet: Learning optical flow with convolutional networks." Proceedings of the IEEE international conference on computer vision. 2015.
  21. Baker, Simon, et al. "A database and evaluation methodology for optical flow." International journal of computer vision 92.1 (2011): 1-31. https://doi.org/10.1007/s11263-010-0390-2
  22. Butler, Daniel J., et al. "A naturalistic open source movie for optical flow evaluation." European conference on computer vision. Springer, Berlin, Heidelberg, 2012.
  23. Geiger, Andreas, et al. "Vision meets robotics: The kitti dataset." The International Journal of Robotics Research 32.11 (2013): 1231-1237. https://doi.org/10.1177/0278364913491297
  24. Aubry, Mathieu, et al. "Seeing 3d chairs: exemplar part-based 2d-3d alignment using a large dataset of cad models." Proceedings of the IEEE conference on computer vision and pattern recognition. 2014
  25. Mayer, Nikolaus, et al. "A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
  26. Richter, Stephan R., Zeeshan Hayder, and Vladlen Koltun. "Playing for benchmarks." Proceedings of the IEEE International Conference on Computer Vision. 2017.
  27. Ilg, Eddy, et al. "Flownet 2.0: Evolution of optical flow estimation with deep networks." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.
  28. Hui, Tak-Wai, Xiaoou Tang, and Chen Change Loy. "Liteflownet: A lightweight convolutional neural network for optical flow estimation." Proceedings of the IEEE conference on computer vision and pattern recognition. 2018.
  29. Sun, Deqing, et al. "Pwc-net: Cnns for optical flow using pyramid, warping, and cost volume." Proceedings of the IEEE conference on computer vision and pattern recognition. 2018.
  30. Ranjan, Anurag, and Michael J. Black. "Optical flow estimation using a spatial pyramid network." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.
  31. Brox, Thomas, et al. "High accuracy optical flow estimation based on a theory for warping." European conference on computer vision. Springer, Berlin, Heidelberg, 2004.
  32. Hu, Yinlin, Rui Song, and Yunsong Li. "Efficient coarse-to-fine patchmatch for large displacement optical flow." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016.
  33. Teed, Zachary, and Jia Deng. "Raft: Recurrent all-pairs field transforms for optical flow." European conference on computer vision. Springer, Cham, 2020.
  34. Chung, Junyoung, et al. "Empirical evaluation of gated recurrent neural networks on sequence modeling." arXiv preprint arXiv:1412.3555 (2014).
  35. Ash, Jordan T., and Ryan P. Adams. "On warm-starting neural network training." arXiv preprint arXiv:1910.08475 (2019).
  36. Jiang, Shihao, et al. "Learning to Estimate Hidden Motions with Global Motion Aggregation." arXiv preprint arXiv:2104.02409 (2021).
  37. Sudheendra Vijayanarasimhan, Susanna Ricco, Cordelia Schmid, Rahul Sukthankar, and Katerina Fragkiadaki. Sfm-net: Learning of structure and motion from video. arXiv preprint arXiv:1704.07804, 2017.
  38. Zhao, Shengyu, et al. "Maskflownet: Asymmetric feature matching with learnable occlusion mask." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020.
  39. Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems. 2017.
  40. Revaud, Jerome, et al. "Epicflow: Edge-preserving interpolation of correspondences for optical flow." Proceedings of the IEEE conference on computer vision and pattern recognition. 2015.
  41. Revaud, Jerome, et al. "Deepmatching: Hierarchical deformable dense matching." International Journal of Computer Vision 120.3 (2016): 300-323. https://doi.org/10.1007/s11263-016-0908-3
  42. Royer, Loic A., et al. "Convexity shape constraints for image segmentation." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016.
  43. Tekin, Bugra, et al. "Learning to fuse 2d and 3d image cues for monocular body pose estimation." Proceedings of the IEEE International Conference on Computer Vision. 2017.
  44. Wulff, Jonas, Laura Sevilla-Lara, and Michael J. Black. "Optical flow in mostly rigid scenes." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017.