DOI QR코드

DOI QR Code

Nine New Records of Ascomycetes from Different Niches in Korea

  • Pangging, Monmi (Environmental Microbiology Lab, Department of Agricultural Biological Chemistry, Chonnam National University) ;
  • Nguyen, Thuong Thuong Thi (Environmental Microbiology Lab, Department of Agricultural Biological Chemistry, Chonnam National University) ;
  • Lee, Hyang Burm (Environmental Microbiology Lab, Department of Agricultural Biological Chemistry, Chonnam National University)
  • Received : 2021.04.05
  • Accepted : 2021.06.29
  • Published : 2021.09.30

Abstract

We isolated nine fungal strains from different environmental materials collected from different locations during a survey of fungal diversity in Korea. Using molecular phylogenetic analyses and morphological characteristics, nine previously undescribed strains were identified and assigned to the species Collariella robusta, Fusicolla acetilerea, Hongkongmyces pedis, Hongkongmyces snookiorum, Mariannaea fusiformis, Metarhizium pemphigi, Pallidocercospora crystallina, Scopulariopsis candida, and Volutella citrinella. Diverse environmental samples may thus be a promising source for isolating and investigating novel fungal species, thus sampling efforts should be increased in future studies. This study also reports identification of some rare fungal species belonging to the genera Hongkongmyces and Pallidocercospora from Korea.

Keywords

Acknowledgement

This study was financially supported by Chonnam National University [Grant number: 2017-2827]. This work was in part supported by the Graduate Program for the Undiscovered Taxa of Korea, the Project on Survey and Discovery of Indigenous Fungal Species of Korea funded by NIBR, and the Project on Discovery of Fungi from Freshwater and Collection of Fungarium, funded by NNIBR of the Ministry of Environment.

References

  1. Nannfeldt JA. Studien uber die morphologie und systematik der nicht-lichenisierten, inoperkulaten Discomyceten. Nova Acta Regiae Soc Sci Upsal IV 1932;8:1-368.
  2. Liu YJ, Hall DB. Body plan evolution of ascomycetes, as inferred from an RNA polymerase II phylogeny. Proc Natl Acad Sci USA 2004;101:4507-12. https://doi.org/10.1073/pnas.0400938101
  3. Wijayawardene NN, Hyde KD, Rajeshkumar KC, Hawksworth DL, Madrid H, Kirk PM, Braun U, Singh RV, Crous PW, Kukwa M, et al. Notes for genera: Ascomycota. Fungal Divers 2017;86:1-594. https://doi.org/10.1007/s13225-017-0386-0
  4. Schoch CL, Crous PW, Groenewald JZ, Boehm EWA, Burgess TI, Gruyter JD, de Hoog GS, Dixon LJ, Grube M, Gueidan C, et al. A class-wide phylogenetic assessment of Dothideomycetes. Stud Mycol 2009;64:1-15. https://doi.org/10.3114/sim.2009.64.01
  5. Luttrell ES. The ascostromatic Ascomycetes. Mycologia 1955;47:511-32. https://doi.org/10.2307/3755666
  6. Eriksson OE. The families of bitunicate ascomycetes. Nordic J Bot 1981;1:800. https://doi.org/10.1111/j.1756-1051.1981.tb01167.x
  7. Barr ME, Huhndorf SM. Loculoascomycetes. In: McLaughlin DJ, McLaughlin EG, Lemke PA editors. The mycota VII, part A. Systematics and evolution. Berlin: Springer Verlag; 2001. p. 283-305.
  8. Hongsanan S, Hyde KD, Phookamsak R, Wanasinghe DN, McKenzie EHC, Sarma VV, Lucking R, Boonmee S, Bhat JD, Liu NG, et al. Refined families of Dothideomycetes: Orders and families incertae sedis in Dothideomycetes. Fungal Divers 2020;105:17-318. https://doi.org/10.1007/s13225-020-00462-6
  9. Maharachchikumbura SSN, Hyde KD, Jones EBG, McKenzie EHC, Bhat JD, Dayarathne MC, Huang SK, Norphanphoun C, Senanayake IC, Perera RH, et al. Families of Sordariomycetes. Fungal Divers 2016;79:1-317. https://doi.org/10.1007/s13225-016-0369-6
  10. Hongsanan S, Maharachchikumbura SSN, Hyde KD, Samarakoon MC, Jeewon R, Zhao Q, Al-Sadi AM, Bahkali AH. An updated phylogeny of Sordariomycetes based on phylogenetic and molecular clock evidence. Fungal Divers 2017;84:25-41. https://doi.org/10.1007/s13225-017-0384-2
  11. Tang AMC, Jeewon R, Hyde KD. Phylogenetic utility of protein (RPB2, β-tubulin) and ribosomal (LSU, SSU) gene sequences in the systematics of Sordariomycetes (Ascomycota, Fungi). Antonie van Leeuwenhoek 2007;91:327-49. https://doi.org/10.1007/s10482-006-9120-8
  12. Luo ZL, Hyde KD, Bhat DJ, Jeewon R, Maharachchikumbura SSN, Bao DF, Li WL, Su XJ, Yang XY, Su HY. Morphological and molecular taxonomy of novel species Pleurotheciaceae from freshwater habitats in Yunnan, China. Mycol Prog 2018;17:511-30. https://doi.org/10.1007/s11557-018-1377-6
  13. Yang J, Liu NG, Liu JK, Hyde KD, Jones EBG, Liu ZY. Phylogenetic placement of Cryptophiale, Cryptophialoidea, Nawawia, Neonawawia gen. nov. and Phialosporostilbe. Mycosphere 2018;9:1132-50. https://doi.org/10.5943/mycosphere/9/6/5
  14. Zhang N, Castlebury LA, Miller AN, Huhndorf SM, Schoch CL, Seifert KA, Rossman AY, Rogers JD, Kohlmeyer J, Volkmann-Kohlmeyer B, et al. An overview of the systematics of the Sordariomycetes based on four gene phylogeny. Mycologia 2006;98:1076-87. https://doi.org/10.3852/mycologia.98.6.1076
  15. Kirk PM, Cannon PF, Minter DW, Stalpers JA. Dictionary of the fungi, 10th edn. Wallingford: CABI; 2008.
  16. Spatafora JW, Bushley KE. Phylogenomics and evolution of secondary metabolism in plant associated fungi. Curr Opin Plant Biol 2015;26:37-44. https://doi.org/10.1016/j.pbi.2015.05.030
  17. Akimitsu K, Tsuge T, Kodama M, Yamamoto M, Otani H. Alternaria host-selective toxins: Determinant factors of plant disease. J Plant Pathol 2014;80:109-22.
  18. Kaewchai S, Soytong K, Hyde KD. Mycofungicides and fungal biofertilizers. Fungal Divers 2009;38:25-50.
  19. Semenova EF, Shpichka AI, Moiseeva IY. About essential oils biotechnology on the base of microbial synthesis. Pharmaceutical Sci 2012;4:29-31.
  20. Xu J, Yang X, Lin Q. Chemistry and biology of Pestalotiopsis derived natural products. Fungal Divers 2014;66:37-68. https://doi.org/10.1007/s13225-014-0288-3
  21. Hyde KD, Xu J, Rapior S, Jeewon R, Lumyong S, Niego AGT, Abeywickrama PD, Aluthmuhandiram JVS, Brahamanage RS, Brooks S, et al. The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Divers 2019;31:1-36.
  22. Stergiopoulos I, Collemare J, Mehrabi R, De Wit PJGM. Phytotoxic secondary metabolites and peptides produced by plant pathogenic Dothideomycete fungi. FEMS Microbiol Rev 2013;37:67-93. https://doi.org/10.1111/j.1574-6976.2012.00349.x
  23. Jones EBG, Devadatha B, Abdel-Wahab MA, Dayarathne MC, Zhang SN, Hyde KD, Liu JK, Bahkali AH, Sarma VV, Tibell S, et al. Phylogeny of new marine Dothideomycetes and Sordariomycetes from mangroves and deep-sea sediments. Botanica Marina 2020;63:155-81. https://doi.org/10.1515/bot-2019-0014
  24. Ramakrishnan D, Tiwari MK, Manoharan G, Sairam T, Thangamani R, Lee JK, Marimuthu J. Molecular characterization of two alkyresorcylic acid synthases from Sordariomycetes fungi. Enzyme Microbiol Technol 2018;115:16-22. https://doi.org/10.1016/j.enzmictec.2018.04.006
  25. Hyde KD, Norphanphoun C, Maharachchikumbura SSN, Bhat DJ, Jones EBG, Bundhun D, Chen YJ, Bao DF, Boonmee S, Calabon MS, et al. Refined families of Sordariomycetes. Mycosphere 2020;11:305-1059. https://doi.org/10.5943/mycosphere/11/1/7
  26. Jayasiri SC, Hyde KD, Jones EBG, McKenzie EHC, Jeewon R, Phillips AJL, Bhat DJ, Wanasinghe DN, Liu JK, Lu YZ, et al. Diversity, morphology and molecular phylogeny of Dothideomycetes on decaying wild seed pods and fruits. Mycosphere 2019;10:1-186. https://doi.org/10.5943/mycosphere/10/1/1
  27. Das K, Lee SY, Jung HY. Morphology and phylogeny of two novel species within the class Dothideomycetes collected from soil in Korea. Mycobiol 2021;49:15-23. https://doi.org/10.1080/12298093.2020.1838114
  28. Goh J, Mun HY, Jeon YJ, Chung N, Park YW, Park S, Hwang H, Cheon W. First report of six Sordariomycetes fungi isolated from plant litter in freshwater ecosystems of Korea. Kor J Mycol 2020;48:103-16. https://doi.org/10.4489/KJM.20200012
  29. Nam B, Lee JS, Lee HB, Choi YJ. Pezizomycotina (Ascomycota) fungi isolated from freshwater environments of Korea: Cladorrhinum australe, Curvularia muehlenbeckiae, Curvularia pseudobrachyspora, and Diaporthe longicolla. Kor J Mycol 2020;48:29-38. https://doi.org/10.4489/KJM.20200003
  30. Eo JK, Park E, Choe HN. Dermea piceina (Dermateaceae): An unrecorded endophytic fungus of isolated from Abies koreana. Kor J Mycol 2020;48:485-9. https://doi.org/10.4489/KJM.20200046
  31. Vilgalys R, Hester M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 1990;172:4238-46. https://doi.org/10.1128/jb.172.8.4238-4246.1990
  32. White TJ, Bruns TD, Lee S, Taylor JW. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: A guide to methods and applications. In: Innis MA, Gelfand DH editors. London: Academic Press; 1990. p. 315-22.
  33. O'Donnell K. Fusarium and its near relatives. Wallingford: UK; 1993.
  34. Glass NL, Donaldson GC. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 1995;61:1323-30. https://doi.org/10.1128/aem.61.4.1323-1330.1995
  35. Sandoval-Denis M, Gene J, Sutton DA, Cano-Lira JF, De Hoog GS, Decock CA, Wiederhold NP, Guarro J. Redefining Microascus, Scopulariopsis and allied genera. Persoonia 2016;36:1-36. https://doi.org/10.3767/003158516X688027
  36. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876-82. https://doi.org/10.1093/nar/25.24.4876
  37. Hall TA. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999;41:95-8.
  38. Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870-4. https://doi.org/10.1093/molbev/msw054
  39. Wang XW, Houbraken J, Groenewald JZ, Meijer M, Andersen B, Nielsen KF, Crous PW, Samson RA. Diversity and taxonomy of Chaetomium and Chaetomium-like fungi from indoor environments. Stud Mycol 2016;84:145-224. https://doi.org/10.1016/j.simyco.2016.11.005
  40. von Arx JA, Guarro J, Figueras MJ. The ascomycete genus Chaetomium. Beih Nova Hedwigia 1986;84:1-162.
  41. Grafenhan T, Schroers HJ, Nirenberg HI, Seifert KA. An overview of the taxonomy, phylogeny, and typification of nectriaceous fungi in Cosmospora, Acremonium, Fusarium, Stilbella, and Volutella. Stud Mycol 2011;68:79-113. https://doi.org/10.3114/sim.2011.68.04
  42. Lechat C, Rossman A. A new species of Fusicolla (Hypocreales), F. ossicola, from Belgium. Ascomycete org 2017;9:225-8.
  43. Tubaki K, Booth C, Harada T. A new variety of Fusarium merismoides. Trans Br Mycol Soc 1976;66:355-66. https://doi.org/10.1016/s0007-1536(76)80072-1
  44. Ding S, Hu H, Gu JD. Fungi colonizing wood sticks of Chinese fir incubated in subtropical urban soil growing with Ficus microcarpa trees. Int J Env Sci Technol 2015;12:3781-90. https://doi.org/10.1007/s13762-015-0802-5
  45. Biedermann PHW, Klepzig KD, Taborsky M, Six DL. Abundance and dynamics of filamentous fungi in the complex ambrosia gardens of the primitively eusocial beetle Xyleborinus saxesenii Ratzeburg (Coleoptera: Curculionidae, Scolytinae). FEMS Microbiol Ecol 2013;83:711-23. https://doi.org/10.1111/1574-6941.12026
  46. Tsang CC, Chan JFW, Trendell-Smith NJ, Ngan AHY, Ling IWH, Lau SKP, Woo PCY. Subcutaneous phaeohyphomycosis in a patient with IgG4-related sclerosing disease caused by a novel ascomycete, Hongkongmyces pedis gen. et sp. nov.: First report of human infection associated with the family Lindgomycetaceae. Med Mycol 2014;52:736-47. https://doi.org/10.1093/mmy/myu043
  47. Crous PW, Wingfield MJ, Burgess TI, Hardy GESt, Gene J, Guarro J, Baseia IG, Garcia D, Gusmao LFP, Souza-Motta CM, et al. Fungal Planet description sheets: 716-784. Persoonia 2018;40:240-393. https://doi.org/10.3767/persoonia.2018.40.10
  48. Samson RA. Paecilomyces and some allied hyphomycetes. Stud Mycol 1974;6:1-119.
  49. Hu DM, Wang M, Cai L. Phylogenetic assessment and taxonomic revision of Mariannaea. Mycol Prog 2017;16:271-83. https://doi.org/10.1007/s11557-016-1252-2
  50. Sorokin N. Rastitelnye parazity cheloveka i zhivotnykn' kak' prichina zaraznykn' boleznei (Plant parasites causing infectious diseases of man and animals). Vyp. II.Pervoe prilozenie k Voenno-Meditsinskomu Zhurnalu za 1883 g (First supplement to J Military Med 1883). St. Petersburg: Izdanie glavnogo Voenno-Meditsinskago Upraveleneia; 1883. p. 168-98.
  51. Tulloch M. The genus Metarhizium. Trans Br Mycol Soc 1976;66:407-11. https://doi.org/10.1016/s0007-1536(76)80209-4
  52. Driver F, Milner RJ, Trueman JWH. A taxonomic revision of Metarhizium based on a phylogenetic analysis of rDNA sequence data. Mycol Res 2000;104:134-50. https://doi.org/10.1017/S0953756299001756
  53. Nishi O, Hasegawa K, Iiyama K, Yasunaga-Aoki C, Shimizu S. Phylogenetic analysis of Metarhizium spp. isolated from soil in Japan. App Entomol Zool 2011;46:301-9. https://doi.org/10.1007/s13355-011-0045-y
  54. Chen ZH, Zhang YG, Yang XN, Chen K, Liu Q, Xu L. A new fungus Metarhizium gaoligongense from China. Int J Agric Biol 2018;20:2271-6.
  55. Montalva C, Collier K, Rocha LFN, Inglis PW, Lopes RB, Luz C, Humber RA. A natural fungal infection of a sylvatic cockroach with Metarhizium blattodeae sp. nov., a member of the M. flavoviride species complex. Fungal Biol 2016;120:655-65. https://doi.org/10.1016/j.funbio.2016.03.004
  56. Crous PW, Braun U, Hunter GC, Wingfield MJ, Verkley GJM, Shin HD, Nakashima C, Groenewald JZ. Phylogenetic lineages in Pseudocercospora. Stud Mycol 2013;75:37-114. https://doi.org/10.3114/sim0005
  57. Guo Y, Zhu Z, Gao J, Zhang C, Zhang X, Dang E, Li W, Qiao H, Liao W, Wang G, et al. The phytopathogenic fungus Pallidocercospora crystallina-caused localized subcutaneous phaeohyphomycosis in a patient with a homozygous missense CARD9 mutation. J Clin Immunol 2019;39:713-25. https://doi.org/10.1007/s10875-019-00679-4
  58. Huang F, Groenewald JZ, Zhu L, Crous PW, Li H. Cercosporoid diseases of citrus. Mycologia 2016;107:1151-71. https://doi.org/10.3852/15-059
  59. Samson RA, Houbraken J, Thrane U, Frisvad JC, Andersen B. Food and indoor fungi. CBS Laboratory Manual Series 2. Utrecht: CBS-KNAW Fungal Biodiversity Centre; 2010.
  60. de Hoog GS, Guarro J, Gene J, Figueras MJ. Atlas of clinical fungi. CD-ROM version 3.1. Utrecht: CBS-KNAW Fungal Biodiversity Centre; 2011.
  61. Sandoval-Denis M, Sutton DA, Fothergill AW, Cano-Lira J, Gene J, Decock CA, de Hoog GS, Guarro J. Scopulariopsis, a poorly known opportunistic fungus: spectrum of species in clinical samples and in vitro responses to antifungal drugs. J Clin Microbiol 2013;51:3937-43. https://doi.org/10.1128/JCM.01927-13
  62. Fries EM. Systema Mycologicum. E. Moritz, Greifswald, Germany 1832;3:261-524.
  63. Lombard L, van der Merwe NA, Groenewald JZ, Crous PW. Generic concepts in Nectriaceae. Stud Mycol 2015;80:189-245. https://doi.org/10.1016/j.simyco.2014.12.002
  64. Ohshiro T, Morita H, Nur EAA, Hosoda K, Uchida R, Tomoda H. Voluhemins, new inhibitors of sterol-O-acyltransferase, produced by Volutella citrinella BF-0440. J Antibiot 2020;73:748-55. https://doi.org/10.1038/s41429-020-0327-0
  65. Kepler RM, Humber RA, Bischoff JF, Rehner SA. Clarification of generic and species boundaries for Metarhizium and related fungi through multigene phylogenetics. Mycologia 2014;106:811-29. https://doi.org/10.3852/13-319
  66. Woudenberg JHC, Meijer M, Houbraken J, Samson RA. Scopulariopsis and Scopulariopsislike species from indoor envionments. Stud Mycol 2017;88:1-35. https://doi.org/10.1016/j.simyco.2017.03.001
  67. Aghyl H, Mehrabi-Koushki M, Esfandiari M. Chaetomium iranicum and Collariella capillicompacta spp. nov. and notes to new hosts of Amesia species in Iran. Sydowia 2020;73:21-30.
  68. Crous PW, Wingfield MJ, Burgess TI, Carnegie AJ, Hardy GEStJ, Smith D, Summerell BA, Cano-Lira JF, Guarro J, Houbraken J, et al. Fungal planet description sheets: 625-715. Persoonia 2017;39:270-467.
  69. Zhang ZF, Liu F, Zhou X, Liu XZ, Liu SJ, Cai L. Culturable mycobiota from Karst caves in China, with descriptions of 20 new species. Persoonia 2017;39:1-31. https://doi.org/10.3767/persoonia.2017.39.01
  70. Nguyen TTT, Lee SH, Jeon SJ, Lee HB. First records of rare ascomycete fungi, Acrostalagmus luteoalbus, Bartalinia robillardoides, and Collariella carteri from freshwater samples in Korea. Mycobiology 2019;47:1-11. https://doi.org/10.1080/12298093.2018.1550894
  71. Crous PW, Wingfield MJ, Burgess TI, Carnegie AJ, Hardy GEST, Smith D, Summerell BA, Cano-Lira JF, Guarro J, Houbraken J, et al. Fungal planet description sheets: 625-715. Persoonia 2017;39:270-467.
  72. Dayarathne MC, Jones EBG, Maharachchikumbura SSN, Devadatha B, Sarma VV, Khongphinitbunjong K, Chomnunti P, Hyde KD. Morphomolecular characterization of microfungi associated with marine based habitats. Mycosphere 2020;11:1-188. https://doi.org/10.5943/mycosphere/11/1/1
  73. Perera RH, Hyde KD, Maharachchikumbura SSN, Jones EBG, McKenzie EHC, Stadler M, Lee HB, Samarakoon MC, Ekanayaka AH, Camporesi E, et al. Fungi on wild seeds and fruits. Mycosphere 2020;11:2108-480. https://doi.org/10.5943/mycosphere/11/1/14
  74. Luo ZL, Hyde KD, Liu JK, Maharachchikumbura SSN, Jeewon R, Bao DF, Bhat DJ, Lin CG, Li WL, Yang J, et al. Freshwater Sordariomycetes. Fungal Divers 2019;99:451-660. https://doi.org/10.1007/s13225-019-00438-1
  75. Jeon YJ, Goh J, Mun HY. Diversity of fungi in brackish water in Korea. Kor J Mycol 2020;48:457-73. https://doi.org/10.4489/KJM.20200044
  76. Fujimitsu H, Taniyama Y, Tajima S, Ahmed IAM, Arima J, Mori N. Purification and characterization of 4-N-trimethylamino-1-butanol dehydrogenase from Fusarium merismoides var. acetilereum. Bio Biotech Biochem 2016;80:1753-58. https://doi.org/10.1080/09168451.2016.1177443
  77. Asano Y, Ando S, Tani Y, Yamada H, Ueno T. Fungal degradation of Triacrylonitrile. Agric Biol Chem 1981;45:57-62. https://doi.org/10.1271/bbb1961.45.57
  78. Dong W, Wang B, Hyde KD, McKenzie EHC, Raja HA, Tanaka K, Abdel-Wahab MA, Abdel-Aziz FA, Doilom M, Phookamsak R, et al. Freshwater Dothideomycetes. Fungal Divers 2020;105:319-575. https://doi.org/10.1007/s13225-020-00463-5
  79. Hyde KD, Dong Y, Phookamsak R, Jeewon R, Bhat DJ, Jones EBG, Liu NG, Abeywickrama PD, Mapook A, Wei D, et al. Fungal diversity notes 1151-1276: Taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Divers 2020;100:5-277. https://doi.org/10.1007/s13225-020-00439-5
  80. Cai L, Kurniawati E, Hyde KD. Morphological and molecular characterization of Mariannaea aquaticola sp. nov. collected from freshwater habitats. Mycol Prog 2010;9:337-43. https://doi.org/10.1007/s11557-009-0641-1
  81. Crous PW, Carnegie AJ, Wingfield MJ, Sharma R, Mughini G, Noordeloos ME, Santini A, Shouche YS, Bezerra JDP, Dima B, et al. Fungal planet description sheets: 868-950. Persoonia 2019;42:291-473. https://doi.org/10.3767/persoonia.2019.42.11
  82. Nguyen TTT, Pangging M, Lee HB. Three unrecorded fungal species from fecal and freshwater samples in Korea. Kor J Mycol 2017;45:304-18. https://doi.org/10.4489/KJM.20170033
  83. Tang L, Hyun MW, Yun YH, Suh DY, Kim SH, Sung GH, Choi HK. Mariannaea samuelsii isolated from a bark beetle-infested elm tree in Korea. Mycobiol 2012;40:94-9. https://doi.org/10.5941/MYCO.2012.40.2.94
  84. Tang L, Hyun MW, Yun YH, Suh DY, Kim SH, Sung GH. New record of Mariannaea elegans var. elegans in Korea. Mycobiol 2012;40:14-9. https://doi.org/10.5941/MYCO.2012.40.1.014
  85. Ishiuchi K, Hirose D, Kondo T, Watanabe K, Terasaka K, Makino T. Mariannamides A and B, new cyclic octapeptides isolated from Mariannaea elegans NBRC102301. Bioorganic Med Chem Lett 2020;30:126946. https://doi.org/10.1016/j.bmcl.2019.126946
  86. Mongkolsamrit S, Khonsanit A, Thanakitpipattana D, Tasanathai K, Noisripoom W, Lamlertthon S, Himaman W, Houbraken J, Samson RA, Luangsa-ard J. Revisiting Metarhizium and the description of new species from Thailand. Stud Mycol 2020;95:171-251. https://doi.org/10.1016/j.simyco.2020.04.001
  87. Lee HW, Nguyen TTT, Mun HY, Lee H, Kim C, Lee HB. Confirmation of two undescribed fungal species from Dokdo of Korea based on current classification system using multiloci. Mycobiol 2015;43:392-401. https://doi.org/10.5941/MYCO.2015.43.4.392
  88. Kim WG, Seok SJ, Weon HY, Lee KH, Lee CJ, Kim YS. Isolation and identification of entomopathogenic fungi collected from mountains and islands in Korea. Kor J Mycol 2010;38:99-104. https://doi.org/10.4489/KJM.2010.38.2.099
  89. FAO Media Centre. Red locust disaster in eastern Africa prevented: Biopesticides being used on a large scale. 24th June 2009, Rome. Available from .
  90. Scholte E-J, Ng'habi K, Kihonda J, Takken W, Paaijmans K, Abdulla S, Killeen GF, Knols BGJ. An entomopathogenic fungus for control of adult African malaria mosquitoes. Sci 2005;308:1641-2. https://doi.org/10.1126/science.1108639
  91. Lorenz SC, Humbert P, Patel AV. Chitin increases drying survival of encapsulated Metarhizum pemphigi blastospores for Ixodes ricinus control. Ticks Tick Borne Dis 2020;11:101537. https://doi.org/10.1016/j.ttbdis.2020.101537
  92. Crous PW, Wingfield MJ, Guarro J, Cheewangkoon R, Bank MVD, Swart WJ, Stchigel AM, Cano-Lira JF, Roux J, Madrid H, et al. Fungal planet description sheets: 154-213. Persoonia 2013;31:188-296. https://doi.org/10.3767/003158513x675925
  93. Li XL, Ojaghian MR, Zhang JZ, Zhu SJ. A new species of Scopulariopsis and its synergistic effect on pathogenicity of Verticillium dahliae on cotton plants. Microbiol Res 2017;201:12-20. https://doi.org/10.1016/j.micres.2017.04.006
  94. Jagielski T, Sandoval-Denis M, Yu J, Yao L, Bakula Z, Kalita J, Skora M, Krzysciak P, de Hoog GS, Guarro J, et al. Molecular taxonomy of Scopulariopsis-like fungi with description of new clinical and environmental species. Fungal Biol 2016;120:586-602. https://doi.org/10.1016/j.funbio.2016.01.014
  95. Oh BJ, Chae MJ, Cho D, Kee SJ, Shin MG, Shin JH, Suh SP, Ryang DW. Infection with Scopulariopsis brevicaulis after cosmetic surgery of the face. Korean J Lab Med 2006;26:32-5.
  96. Gutarowska B. Moulds in biodeterioration of technical materials. Folia Biologica et Oecologica 2014;10:27-39. https://doi.org/10.2478/fobio-2014-0012
  97. Lavin P, de Saravia SG, Guiamet P. Scopulariopsis sp. and Fusarium sp. in the documentary heritage: evaluation of their biodeterioration ability and antifungal effect of two essential oils. Microbiol Ecol 2016;71:628-33. https://doi.org/10.1007/s00248-015-0688-2
  98. Cheng CN, Focht DD. Production of arsine and methylarsines in soil and in culture. Appl Env Microbiol 1979;38:494-8. https://doi.org/10.1128/aem.38.3.494-498.1979
  99. Boriova K, Cernansky S, Matus P, Bujdos M, Simonovicova A. Bioaccumulation and biovolatilization of various elements using filamentous fungus Scopulariopsis brevicaulis. Lett Appl Microbiol 2014;59:217-23. https://doi.org/10.1111/lam.12266
  100. Tibpromma S, Hyde KD, McKenzie EH, Bhat DJ, Phillips AJL, Wanasinghe DN, Samarakoon MC, Jayawardena RS, Dissanayake AJ, Tennakoon DS, et al. Fungal diversity notes 840-928: Micro-fungi associated with Pandanaceae. Fungal Divers 2018;93:1-160. https://doi.org/10.1007/s13225-018-0408-6
  101. Babu AG, Kim SW, Yadav DR, Adhikari M, Kim C, Lee HB, Lee YS. A new record of Volutella ciliata isolated from crop field soil in Korea. Mycobiology 2015;43:71-4. https://doi.org/10.5941/MYCO.2015.43.1.71
  102. Nur EAA, Kobayashi K, Amagai A, Ohshiro T, Tomoda H. New terpendole congeners, inhibitors of sterol-O-acyltransferase, produced by Volutella citrinella BF-0440. Molecules 2020;25:3079. https://doi.org/10.3390/molecules25133079