DOI QR코드

DOI QR Code

Application of Engineered Zinc Finger Proteins Immobilized on Paramagnetic Beads for Multiplexed Detection of Pathogenic DNA

  • Shim, Jiyoung (Department of Chemistry, Western Kentucky University) ;
  • Williams, Langley (Department of Chemistry, Western Kentucky University) ;
  • Kim, Dohyun (Department of Mechanical Engineering, Myongji University) ;
  • Ko, Kisung (Department of Medicine, College of Medicine, Chung-Ang University) ;
  • Kim, Moon-Soo (Department of Chemistry, Western Kentucky University)
  • Received : 2021.06.20
  • Accepted : 2021.07.07
  • Published : 2021.09.28

Abstract

Micro-scale magnetic beads are widely used for isolation of proteins, DNA, and cells, leading to the development of in vitro diagnostics. Efficient isolation of target biomolecules is one of the keys to developing a simple and rapid point-of-care diagnostic. A zinc finger protein (ZFP) is a double-stranded (ds) DNA-binding domain, providing a useful scaffold for direct reading of the sequence information. Here, we utilized two engineered ZFPs (Stx2-268 and SEB-435) to detect the Shiga toxin (stx2) gene and the staphylococcal enterotoxin B (seb) gene present in foodborne pathogens, Escherichia coli O157 and Staphylococcus aureus, respectively. Engineered ZFPs are immobilized on a paramagnetic bead as a detection platform to efficiently isolate the target dsDNA-ZFP bound complex. The small paramagnetic beads provide a high surface area to volume ratio, allowing more ZFPs to be immobilized on the beads, which leads to increased target DNA detection. The fluorescence signal was measured upon ZFP binding to fluorophore-labeled target dsDNA. In this study, our system provided a detection limit of ≤ 60 fmol and demonstrated high specificity with multiplexing capability, suggesting a potential for development into a simple and reliable diagnostic for detecting multiple pathogens without target amplification.

Keywords

Acknowledgement

This research was supported by the Kentucky Biomedical Research Infrastructure Network (KBRIN)-Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health under grant number 2P20GM10343614, and National Science Foundation (NSF)-International Research Experiences for Students (IRES) Award under grant number IIA-1358222.

References

  1. Chinen AB, Guan CM, Ferrer JR, Barnaby SN, Merkel TJ, Mirkin CA. 2015. Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chem. Rev. 115: 10530-10574. https://doi.org/10.1021/acs.chemrev.5b00321
  2. Mirasoli M, Guardigli M, Michelini E, Roda A. 2014. Recent advancements in chemical luminescence-based lab-on-chip and microfluidic platforms for bioanalysis. J. Pharm. Biomed. Anal. 87: 36-52. https://doi.org/10.1016/j.jpba.2013.07.008
  3. Shim J, Nikolov A, Wasan D. 2017. Escherichia coli removal from model substrates: Underlying mechanism based on nanofluid structural forces. J. Colloid. Interface Sci. 498: 112-122. https://doi.org/10.1016/j.jcis.2017.03.050
  4. Shim J, Stewart DS, Nikolov AD, Wasan DT, Wang R, Yan R, et al. 2017. Differential MS2 interaction with food contact surfaces determined by atomic force microscopy and virus recovery. Appl. Environ. Microbiol. 83: e01881-17.
  5. Zhao T, Zhao P, Doyle MP. 2009. Inactivation of Salmonella and Escherichia coli O157:H7 on lettuce and poultry skin by combinations of levulinic acid and sodium dodecyl sulfate. J. Food Prot. 72: 928-936. https://doi.org/10.4315/0362-028X-72.5.928
  6. Shieh YC, Tortorello ML, Fleischman GJ, Li D, Schaffner DW. 2014. Tracking and modeling norovirus transmission during mechanical slicing of globe tomatoes. Int. J. Food Microbiol. 180: 13-18. https://doi.org/10.1016/j.ijfoodmicro.2014.04.002
  7. Cleven BE, Palka-Santini M, Gielen J, Meembor S, Kronke M, Krut O. 2006. Identification and characterization of bacterial pathogens causing bloodstream infections by DNA microarray. J. Clin. Microbiol. 44: 2389-2397. https://doi.org/10.1128/JCM.02291-05
  8. Palka-Santini M, Cleven BE, Eichinger L, Kronke M, Krut O. 2009. Large scale multiplex PCR improves pathogen detection by DNA microarrays. BMC Microbiol. 9: 1. https://doi.org/10.1186/1471-2180-9-1
  9. Wang C, Wu B, Amer S, Luo J, Zhang H, Guo Y, et al. 2010. Phylogenetic analysis and molecular characteristics of seven variant Chinese field isolates of PRRSV. BMC Microbiol. 10: 146. https://doi.org/10.1186/1471-2180-10-146
  10. Wang D, Coscoy L, Zylberberg M, Avila PC, Boushey HA, Ganem D, et al. 2002. Microarray-based detection and genotyping of viral pathogens. Proc. Natl. Acad. Sci. USA 99: 15687-15692. https://doi.org/10.1073/pnas.242579699
  11. Warsen AE, Krug MJ, LaFrentz S, Stanek DR, Loge FJ, Call DR. 2004. Simultaneous discrimination between 15 fish pathogens by using 16S ribosomal DNA PCR and DNA microarrays. Appl. Environ. Microbiol. 70: 4216-4221. https://doi.org/10.1128/AEM.70.7.4216-4221.2004
  12. Peplies J, Lau SCK, Pernthaler J, Amann R, Glockner FO. 2004. Application and validation of DNA microarrays for the 16S rRNA-based analysis of marine bacterioplankton. Environ. Microbiol. 6: 638-645. https://doi.org/10.1111/j.1462-2920.2004.00588.x
  13. Wu LY, Thompson DK, Li GS, Hurt RA, Tiedje JM, Zhou JZ. 2001. Development and evaluation of functional gene arrays for detection of selected genes in the environment. Appl. Environ. Microbiol. 67: 5780-5790. https://doi.org/10.1128/AEM.67.12.5780-5790.2001
  14. Beerli RR, Barbas CF. 2002. Engineering polydactyl zinc-finger transcription factors. Nat. Biotechnol. 20: 135-141. https://doi.org/10.1038/nbt0202-135
  15. Wolfe SA, Nekludova L, Pabo CO. 2000. DNA recognition by Cys(2)His(2) zinc finger proteins. Ann. Rev. Biophy. Biomol. Struct. 29: 183-212. https://doi.org/10.1146/annurev.biophys.29.1.183
  16. Pavletich NP, Pabo CO. 1991. Zinc finger DNA recognition - Crystal-structure of a Zif268-DNA complex at 2.1-A. Science252: 809-817. https://doi.org/10.1126/science.2028256
  17. Kim MS, Kini AG. 2017. Engineering and application of zinc finger proteins and TALEs for biomedical research. Mol. Cells 40: 533-541. https://doi.org/10.14348/molcells.2017.0139
  18. Dreier B, Beerli RR, Segal DJ, Flippin JD, Barbas CF. 2001. Development of zinc finger domains for recognition of the 5 '-ANN-3 ' family of DNA sequences and their use in the construction of artificial transcription factors. J. Biol. Chem. 276: 29466-29478. https://doi.org/10.1074/jbc.M102604200
  19. Dreier B, Segal DJ, Barbas CF. 2000. Insights into the molecular recognition of the 5 '-GNN-3 ' family of DNA sequences by zinc finger domains. J. Mol. Biol. 303: 489-502. https://doi.org/10.1006/jmbi.2000.4133
  20. Liu Q, Segal DJ, Ghiara JB, Barbas CF. 1997. Design of polydactyl zinc-finger proteins for unique addressing within complex genomes. Proc. Natl. Acad. Sci. USA 94: 5525-5530. https://doi.org/10.1073/pnas.94.11.5525
  21. Segal DJ, Dreier B, Beerli RR, Barbas CF. 1999. Toward controlling gene expression at will: Selection and design of zinc finger domains recognizing each of the 5 '-GNN-3 ' DNA target sequences. Proc. Natl. Acad. Sci. USA 96: 2758-2763. https://doi.org/10.1073/pnas.96.6.2758
  22. Bhakta MS, Segal DJ. 2010. The generation of zinc finger proteins by modular assembly. Methods Mol. Biol. 649: 3-30. https://doi.org/10.1007/978-1-60761-753-2_1
  23. Ha DT, Ghosh S, Ahn CH, Segal DJ, Kim MS. 2018. Pathogen-specific DNA sensing with engineered zinc finger proteins immobilized on a polymer chip. Analyst 143: 4009-4016. https://doi.org/10.1039/c8an00395e
  24. Kim MS, Stybayeva G, Lee JY, Revzin A, Segal DJ. 2011. A zinc finger protein array for the visual detection of specific DNA sequences for diagnostic applications. Nucleic Acids Res. 39: e29. https://doi.org/10.1093/nar/gkq1214
  25. Kim MS, Kim J. 2016. Multiplexed detection of pathogen-specific DNA using engineered zinc finger proteins without target amplification. Anal. Methods 8: 6696-6700. https://doi.org/10.1039/C6AY02102F
  26. Fang CS, Kim KS, Yu B, Jon S, Kim MS, Yang H. 2017. Ultrasensitive electrochemical detection of miRNA-21 using a zinc finger protein specific to DNA-RNA hybrids. Anal. Chem. 89: 2024-2031. https://doi.org/10.1021/acs.analchem.6b04609
  27. Porter JR, Stains CI, Segal DJ, Ghosh I. 2007. Split beta-lactamase sensor for the sequence-specific detection of DNA methylation. Anal. Chem. 79: 6702-6708. https://doi.org/10.1021/ac071163+
  28. Kim C, Hoffmann G, Searson PC. 2017. Integrated magnetic bead-quantum dot immunoassay for malaria detection. ACS Sens. 2: 766-772. https://doi.org/10.1021/acssensors.7b00119
  29. Lee H, Shin TH, Cheon J, Weissleder R. 2015. Recent developments in magnetic diagnostic systems. Chem. Rev. 115: 10690-10724. https://doi.org/10.1021/cr500698d
  30. Shim WB, Song JE, Mun H, Chung DH, Kim MG. 2014. Rapid colorimetric detection of Salmonella typhimurium using a selective filtration technique combined with antibody-magnetic nanoparticle nanocomposites. Anal. Bioanal. Chem. 406: 859-866. https://doi.org/10.1007/s00216-013-7497-6
  31. Hayes MA, Polson NA, Phayre AN, Garcia AA. 2001. Flow-based microimmunoassay. Anal. Chem. 73: 5896-5902. https://doi.org/10.1021/ac0104680
  32. Evans BA, Ronecker JC, Han DT, Glass DR, Train TL, Deatsch AE. 2016. High-permeability functionalized silicone magnetic microspheres with low autofluorescence for biomedical applications. Mater. Sci. Eng. C Mater. Biol. Appl. 62: 860-869. https://doi.org/10.1016/j.msec.2016.01.094
  33. Ha DT, Nguyen VT, Kim MS. 2021. Graphene oxide-based simple and rapid detection of antibiotic resistance gene via quantum dot-labeled zinc finger proteins. Anal. Chem. 3: 8459-8466.