References
- KKP. 2018. Produktivitas Perikanan Indonesia. Available from https://kkp.go.id/wp-content/uploads/2018/01/KKP-Dirjen-PDSPKP-FMB-Kominfo-19-Januari-2018.pdf (Accessed Sep. 1, 2020). (in Indonesian).
- Shelley C, Lovatelli A. 2011. Mud Crab Aquaculture: A Practical Manual, pp. 22-29. Food and Agriculture Organization of the United Nations, Rome, Italy.
- Hastuti YP, Rusmana I, Nirmala K, Affandi R. 2017. Activities of NH4+ and NO2- oxidizing bacteria in a recirculating system of mud crab (Scylla serrata) culture with different number of shelter. Res. J. Microbiol. 12: 137-145. https://doi.org/10.3923/jm.2017.137.145
- Zumft WG. 1997. Cell biology and molecular basic of denitrification. Microbiol. Mol. Biol. Rev. 61: 533-616. https://doi.org/10.1128/.61.4.533-616.1997
- Giblin A, Tobias C, Song B, Weston N, Banta GT, Rivera-Monroy VH. 2013. The importance of dissimilatory nitrate reduction to ammonium (DNRA) in the nitrogen cycle of coastal ecosystems. Oceanography 26: 124-131. https://doi.org/10.5670/oceanog.2013.54
- Richardson DJ. 2000. Bacterial respiration: a flexible process for a changing environment. Microbiology 146: 551-571. https://doi.org/10.1099/00221287-146-3-551
- Kox MAR, Jetten MSM. 2015. The nitrogen cycle, pp. 205-214. In Lugtenberg B (ed.), Principles of Plant-Microbe Interactions. Springer International Publishing, Berlin.
- Zhou S, Huang T, Zhang H, Zeng M, Liu F, Bai S, et al. 2015. Nitrogen removal characteristic of enhanced in situ indigenous aerobic denitrification bacteria for micro-polluted reservoir source water. Bioresour. Technol. 201: 195-207. https://doi.org/10.1016/j.biortech.2015.11.041
- Hastuti YP, Rusmana I, Nirmala K, Affandi R. 2017. Activities of NH4+ and NO2-oxidizing bacteria in a recirculating system of mud crab (Scylla serrata) culture with different number of shelter. Res. J. Microbiol. 12: 137-145. https://doi.org/10.3923/jm.2017.137.145
- Hastuti YP, Rusmana I, Nirmala K, Affandi R, Tridesianti S. 2019. Identification and characterization of nitrifying bacteria in mud crab (Scylla serrata) recirculation aquaculture system by 16S rRNA sequencing. Biodiversitas 20: 1339-1343.
- Novita L. 2014. Diversity of bacterial community that contribute in nitrogen cycle at lake of Situ Sawangan-Bojongsari, West Java. Institut Pertanian Bogor, Bogor. (in Indonesia).
- Hugh R, Leifson EJ. 1953. The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram negative bacteria. J. Bacteriol. 66: 24-26. https://doi.org/10.1128/jb.66.1.24-26.1953
- Hadioetomo RS. 1983. Mikrobiologi Dasar dalam Praktek. Gramedia Pustaka Utama, Jakarta. (in Indonesian).
- Marchesi JR, Sato T, Weightman AJ, Martin TA, Fry JC, Hiom SJ, et al. 1998. Design and evaluation of useful bacteria specific PCR primers that amplify genes coding for bacteria 16S rRNA. Appl. Environ. Microbiol. 64: 795-799. https://doi.org/10.1128/aem.64.2.795-799.1998
- Yu L, Liu Y, Wang G. 2008. Identification of novel denitrifying bacteria Stenotrophomonas sp. ZZ15 and Oceanimonas sp. YC13 application for removal of nitrate from industrial wastewater. Biodegradation 20: 391-400. https://doi.org/10.1007/s10532-008-9230-2
- Heylen K, Vanparys B, Peirsegaele F. 2007. Stenotrophomonas terrae sp. nov. and Stenotrophomonas humi sp. nov., two nitratereducing bacteria isolated from soil. Int. J. Syst. Evol. Microbiol. 57: 2056-2061. https://doi.org/10.1099/ijs.0.65044-0
- Jafari SJ, Moussavi G, Yaghmaeian K. 2015. High-rate biological denitrification in the cyclic rotating bed biological reactor: effect of COD/NO3- nitrate concentration and salinity and the phylogenetic analysis of denitrifiers. Bioresour. Technol. 197: 482-488. https://doi.org/10.1016/j.biortech.2015.08.047
- He TX, Ni JP, Li ZL, Sun Q, Qing Y, Xu Y. 2016. Heterotrophic nitrification and aerobic denitrification of the hypothermia aerobic denitrification bacterium: Arthrobacter arilaitensis. Huan Jing ke Xue. 37: 1082-1088.
- Babatsouli P, Fodelianakis S, Paranychianakis N, Venieri D, Dialynas M, Kalogerakis N. 2015. Single stage treatment of saline wastewater with marine bacterial-microalgae consortia in a fixed-bed photobioreactor. J. Hazard. Mater. 292: 155-163. https://doi.org/10.1016/j.jhazmat.2015.02.060
- Wang B, Gong Y, Huang W, Wang Y, Zhou J. 2017. Bacterial community structure in simultaneous nitrification, denitrification and organic matter removal process treating saline mustard tuber wastewater as revealed by 16S rRNA sequencing. Bioresour. Technol. 228: 31-38. https://doi.org/10.1016/j.biortech.2016.12.071
- Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, et al. 2015. CDD: NCBI's conserved domain database. Nucleic Acids Res. 43(Database issue): D222-D226. https://doi.org/10.1093/nar/gku1221
- Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30: 2725-2729. https://doi.org/10.1093/molbev/mst197
- van den Berg EM, Boleij M, Kuenen JG, Kleerebezem R, van Loosdrecht MCM. 2016. DNRA and denitrification coexist over a broad range of acetate/N-NO3- ratios, in a chemostat enrichment culture. Front. Microbiol. 7: 1842. https://doi.org/10.3389/fmicb.2016.01842
- Plummer P, Tobias C, Cady D. 2015. Nitrogen reduction pathways in estuarine sediments: Influences of organic carbon and sulfide. J. Geophys. Res. Biogeosci. 120: 1958-1972. https://doi.org/10.1002/2015JG003057
- van den Berg EM, van Dongen U, Abbas B, van Loosdrecht MCM. 2015. Enrichment of DNRA bacteria in a continuous culture. ISME J. 9: 2153-2161. https://doi.org/10.1038/ismej.2015.26
- Deborde J, Marchand C, Molnar N, Patrona LD, Meziane T. 2015. Concentration and fractionation of carbon, iron, sulfur, nitrogen and phosphorus in mangrove sediment along an intertidal gradient (semi-arid climate, New Caledonia). J. Mar. Sci. Eng. 3: 52-72. https://doi.org/10.3390/jmse3010052