DOI QR코드

DOI QR Code

Identification and Characterization of Microbial Community in the Coelomic Fluid of Earthworm (Aporrectodea molleri)

  • Yakkou, Lamia (Reserch Team : Lumbricidae, Improving Soil Productivity and Environment (LAPSE), Centre (Eau, Ressources Naturelles, Environnement et Developpement Durable (CERNE2D)) Mohammed V University in Rabat, Ecole Normale Superieure (ENS)) ;
  • Houida, Sofia (Reserch Team : Lumbricidae, Improving Soil Productivity and Environment (LAPSE), Centre (Eau, Ressources Naturelles, Environnement et Developpement Durable (CERNE2D)) Mohammed V University in Rabat, Ecole Normale Superieure (ENS)) ;
  • Dominguez, Jorge (Grupo de Ecoloxia Animal (GEA), Universidade de Vigo) ;
  • Raouane, Mohammed (Reserch Team : Lumbricidae, Improving Soil Productivity and Environment (LAPSE), Centre (Eau, Ressources Naturelles, Environnement et Developpement Durable (CERNE2D)) Mohammed V University in Rabat, Ecole Normale Superieure (ENS)) ;
  • Amghar, Souad (Reserch Team : Lumbricidae, Improving Soil Productivity and Environment (LAPSE), Centre (Eau, Ressources Naturelles, Environnement et Developpement Durable (CERNE2D)) Mohammed V University in Rabat, Ecole Normale Superieure (ENS)) ;
  • Harti, Abdellatif El (Reserch Team : Lumbricidae, Improving Soil Productivity and Environment (LAPSE), Centre (Eau, Ressources Naturelles, Environnement et Developpement Durable (CERNE2D)) Mohammed V University in Rabat, Ecole Normale Superieure (ENS))
  • 투고 : 2021.04.26
  • 심사 : 2021.05.18
  • 발행 : 2021.09.28

초록

Earthworms play an important role in soil fertilization, interacting continually with microorganisms. This study aims to demonstrate the existence of beneficial microorganisms living in the earthworm's immune system, the coelomic fluid. To achieve this goal, a molecular identification technique was performed, using cytochrome c oxidase I (COI) barcoding to identify abundant endogenic earthworms inhabiting the temperate zone of Rabat, Morocco. Then, 16S rDNA and ITS sequencing techniques were adopted for bacteria and fungi, respectively. Biochemical analysis, showed the ability of bacteria to produce characteristic enzymes and utilize substrates. Qualitative screening of plant growth-promoting traits, including nitrogen fixation, phosphate and potassium solubilization, and indole acetic acid (IAA) production, was also performed. The result of mitochondrial COI barcoding allowed the identification of the earthworm species Aporrectodea molleri. Phenotypic and genotypic studies of the sixteen isolated bacteria and the two isolated fungi showed that they belong to the Pseudomonas, Aeromonas, Bacillus, Buttiauxella, Enterobacter, Pantoea, and Raoultella, and the Penicillium genera, respectively. Most of the isolated bacteria in the coelomic fluid showed the ability to produce β-glucosidase, β-glucosaminidase, Glutamyl-β-naphthylamidase, and aminopeptidase enzymes, utilizing substrates like aliphatic thiol, sorbitol, and fatty acid ester. Furthermore, three bacteria were able to fix nitrogen, solubilize phosphate and potassium, and produce IAA. This initial study demonstrated that despite the immune property of earthworms' coelomic fluid, it harbors beneficial microorganisms. Thus, the presence of resistant microorganisms in the earthworm's immune system highlights a possible selection process at the coelomic fluid level.

키워드

과제정보

The work is carried out with the support of the National Center for Scientific and Technical Research (CNRST) within the framework of the Research Excellence Scholarships Program.

참고문헌

  1. Feller C, Brown GG, Blanchart E, Deleporte P, Chernyanskii SS. 2003. Charles Darwin, earthworms and the natural sciences: Various lessons from past to future. Agric. Ecosyst. Environ. 99: 29-49. https://doi.org/10.1016/S0167-8809(03)00143-9
  2. Blouin M, Hodson ME, Delgado EA, Baker G, Brussaard L, Butt KR, et al. 2013. A review of earthworm impact on soil function and ecosystem services. Eur. J. Soil Sci. 64: 161-182. https://doi.org/10.1111/ejss.12025
  3. Brown GG, Barois I, Lavelle P. 2000. Regulation of soil organic matter dynamics and microbial activity in the drilosphere and the role of interactions with other edaphic functional domains. Eur. J. Soil Biol. 36: 177-198. https://doi.org/10.1016/S1164-5563(00)01062-1
  4. Raouane M, El Harti A. 2016. Pouvoir neutralisant des pH acides par les excretions cutanees de Lumbricus terrestris L. Bull. la Soc. Rdes Sci. Liege 85: 1-16.
  5. El Harti A, Saghi M, Molina J, Teller G. 2001. Production de composes indoliques rhizogenes par le ver de terre Lumbricus terrestris. Can. J. Zool. 79: 1921-1932. https://doi.org/10.1139/cjz-79-11-1921
  6. Picon MC, Teisaire ES, Zutara MS, Giunta SA. 2015. Identification of the intestinal microbial community of eisenia andrei (annelida: lumbricidae) raised in different substrates. Mun. Ent. Zool. 10: 101-106.
  7. Aira M, Perez-Losada M, Dominguez J. 2018. Diversity, structure and sources of bacterial communities in earthworm cocoons. Sci. Rep. 8: 6632. https://doi.org/10.1038/s41598-018-25081-9
  8. Edwards CA. 2004. Earthworms Ecology. CRC press.
  9. Lavelle P, Bignell D, Lepage M, Wolters V, Roger P, Ineson P, et al. 1997. Soil function in a changing world: The role of invertebrate ecosystem engineers. Eur. J. Soil Biol. 33: 159-193.
  10. Kim HJ, Shin KH, Cha CJ, Hur HG. 2004. Analysis of aerobic and culturable bacterial community structures in earthworm (Eisenia fetida) intestine. Agric. Chem. Biotechnol. 47: 137-142.
  11. Kim ES, Hong SW, Chung KS. 2011. Comparative analysis of bacterial diversity in the intestinal tract of earthworm (Eisenia fetida) using DGGE and pyrosequencing. Microbiol. Biotechnol. Lett. 39: 374-381.
  12. Bilej M, Prochazkova P, Roubalova R, Skanta F, Dvorak J. 2018. Annelida: recognition of nonself in earthworms. pp. 161-172. In: Advances in comparative immunology. Springer International Publishing.
  13. Sims WR, Gerard BM. 1985. Keys and notes for the identification and study of the species, brill arch. Linnean society of London, Estuarine and Brackish-Water Sciences Association.
  14. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 5: 294-299.
  15. Garrity GM, Brenner DJ, Krieg NR, Staley JT. 2005. Bergey's manual of systematic bacteriology, Secon ed. Vol. two: The Proteobacteria, Part B: Gammaproteobacteria. Springer-Verlag New York Inc. 2: 883-904.
  16. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35: 1547-1549. https://doi.org/10.1093/molbev/msy096
  17. Saitou N, Nei M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4 406-425.
  18. Kirk PL. 1950. Kjeldahl method for total nitrogen. Anal. Chem. 22: 354-358. https://doi.org/10.1021/ac60038a038
  19. Mehta S, Nautiyal CS. 2001. An efficient method for qualitative screening of phosphate-solubilizing bacteria. Curr. Microbiol. 43: 51-56. https://doi.org/10.1007/s002840010259
  20. Sugumaran P, Janarthanam B. 2007. Solubilization of potassium-containing minerals by bacteria and their effect on plant growth. World J. Agric. Sci. 3: 350-355.
  21. Shokri D, Emtiazi G. 2010. Indole-3-acetic acid (IAA) production in symbiotic and non-symbiotic nitrogen-fixing bacteria and its optimization by taguchi design. Curr. Microbiol. 61: 217-225. https://doi.org/10.1007/s00284-010-9600-y
  22. Benabdellouahad S. 2006. Structure, dynamique et typologies physico-chimiques et phytoplanctoniques de l'estuaire du bouregreg (cote atlantique marocaine). Dissertation, University Mohammed V Agdal.
  23. Bityutskii NP, Maiorov EI, Orlova NE. 2012. European Journal of Soil Biology The priming effects induced by earthworm mucus on mineralization and humification of plant residues. Eur. J. Soil Biol. 50: 1-6. https://doi.org/10.1016/j.ejsobi.2011.11.008
  24. Damayanti E, Julendra H, Sofyan A. 2008. Antibacteria activity of earthworm meal (Lumbricus rubellus) with different methods to the Escherichia coli. pp. 54-60. In: National Food Seminar, Yogyakarta.
  25. Istiqomah L, Sofyan A, Damayanti E, Julendra H. 2009. Amino acid profile of earthworm and earthworm meal (Lumbricus rubellus) for animal feedstuff. J. Indones Trop Anim. Agric. 34: 253-257.
  26. Ghatnekar SD, Kavian M, Ghatnekar GS. 1995. Biomanagement of wastes through vermiculture. Ecology 10: 1-7. https://doi.org/10.2307/1940509
  27. Kathireswari P, Alakesan A, Abirami P, Sangeetha P. 2014. Antimicrobial activity of earthworm coelomic fluid against disease causing microorganisms. Int. J. Curr. Microbiol. Appl. Sci. 3: 608-613.
  28. Brown GG. 1995. How do earthworms affect microfloral and faunal community diversity? Plant Soil 170: 209-231. https://doi.org/10.1007/BF02183068
  29. Roubalova R, Prochazkova P, Dvorak J. 2015. The role of earthworm defense mechanisms in ecotoxicity studies. Invertebr. Surviv. J. 12: 203-213.
  30. Stein E, Avtalion RR, Cooper EL. 1977. The coelomocytes of the earthworm Lumbricus terrestris: morphology and phagocytic properties. J. Morphol. 153: 467-477. https://doi.org/10.1002/jmor.1051530310
  31. Bilej M, Prochazkova P, Silerova M, Joskova R. 2010. Earthworm immunity. Prog. Mol. Subcell. Biol. 15: 10-45.
  32. Roch P, Lassegues M, Valembois P. 1991. Antibacterial activity of Eisenia fetida andrei coelomic fluid: III-Relationship within the polymorphic hemolysins. Dev. Comp. Immunol. 15: 27-32. https://doi.org/10.1016/0145-305X(91)90044-Y
  33. Valembois P, Lassegues M, Roch P, Vaillier J. 1985. Scanning electron-microscopic study of the involvement of coelomic cells in earthworm antibacterial defense. Cell Tissue Res. 240: 479-484. https://doi.org/10.1007/BF00222363
  34. Wang C, Sun Z, Zheng D, Liu X. 2011. Function of mucilaginous secretions in the antibacterial immunity system of Eisenia fetida. Pedobiologia (Jena) 54: S57-S62. https://doi.org/10.1016/j.pedobi.2010.11.001
  35. Brown GG, Feller C, Blanchart E, Deleporte P, Chernyanskii SS. 2003. With Darwin, earthworms turn intelligent and become human friends. Pedobiologia (Jena) 47: 924-933. https://doi.org/10.1078/0031-4056-00282
  36. Sunar K, Dey P, Chakraborty U, Chakraborty B. 2015. Biocontrol ef fi cacy and plant growth promoting activity of Bacillus altitudinis isolated from Darjeeling hills , India. J. Basic Microbiol. 55: 91-104. https://doi.org/10.1002/jobm.201300227
  37. Bhattacharyya PN, Jha DK. 2012. Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World J. Microbiol. Biotechnol. 28: 1327-1350. https://doi.org/10.1007/s11274-011-0979-9
  38. Yousra B. 2018. Diversity in the susceptibility of Botrytis cinerea strains to the biological control agent Pseudomonas helmanticensis. IOBC/WPRS Bull. 133: 100-104.
  39. Mishra PK, Bisht SC, Jeevanandan K, Kumar S, Bisht JK, Bhatt JC. 2014. Synergistic effect of inoculating plant growth- promoting Pseudomonas spp. and Rhizobium leguminosarum-FB1 on growth and nutrient uptake of rajmash (Phaseolus vulgaris L.). Arch Agron. Soil Sci. 60: 799-815. https://doi.org/10.1080/03650340.2013.843773
  40. Sun Z, Liu K, Zhang J, Zhang Y. 2017. IAA producing Bacillus altitudinis alleviates iron stress in Triticum aestivum L. seedling by both bioleaching of iron and up-regulation of genes encoding ferritins. Plant Soil 419: 1-11. https://doi.org/10.1007/s11104-017-3218-9
  41. Biswas JK, Banerjee A, Rai M, Naidu R, Biswas B, Vithanage M, et al. 2018. Potential application of selected metal resistant phosphate solubilizing bacteria isolated from the gut of earthworm (Metaphire posthuma) in plant growth promotion. Geoderma 330: 117-124. https://doi.org/10.1016/j.geoderma.2018.05.034