References
- Brueckner B, Lyko F. 2006. DNA methyltransferase inhibitors: old and new drugs for an epigenetic cancer therapy. Trends Pharmacol. Sci. 25: 551-554. https://doi.org/10.1016/j.tips.2004.09.004
- Shames DS, Minna JD, Gazdar AF. 2007. DNA methylation in health, disease, cander. Curr. Mol. Med. 7: 85-102. https://doi.org/10.2174/156652407779940413
- Norberg P, Bergstrom T, Liljeqvist JA. 2006. Genotyping of clinical herpes simplex virus type 1 isolates by use of restriction enzymes. J. Clin. Microbiol. 44: 4511-4514. https://doi.org/10.1128/JCM.00421-06
- Xu X, Han MS, Mirkin CA. 2007. A gold-nanoparticle-based realtime colorimetric screening method for endonuclease activity and inhibition. Angew. Chem. Int. Ed. 46: 3468-3470. https://doi.org/10.1002/anie.200605249
- Harford SE, Goodall AJ. 1988. Mode of DNA cleavage by the EcoRV restriction endonuclease. Biochemistry 27: 1771-1777. https://doi.org/10.1021/bi00405a058
- Jeltsch A, Fritz A, Alves A, Wolfes H, Pingoud A. 1993. A fast and accurate enzyme-linked immunosorbent assay for the determination of the DNA cleavage activity of restriction endonucleases. Anal. Biochem. 213: 234-240. https://doi.org/10.1006/abio.1993.1415
- Sharp PA, Sugden B, Sambrock J. 1973. Detection of two restriction endonuclease activities in Haemophilus Parainfluenzae using analytical agarose--ethidium bromide electrophoresis. Biochemistry 12: 3055-3063. https://doi.org/10.1021/bi00740a018
- Song G, Chen C, Ren J, Qu X. 2009. A simple, universal colorimetric assay for endonuclease/methyltransferase activity and inhibition based on an enzyme-responsive nanoparticle system. ACS Nano 3: 1183-1189. https://doi.org/10.1021/nn800768z
- Zhao H, Dong J, Zhou F, Li B. 2017. One facile fluorescence strategy for sensitive detection of endonuclease activity using DNA-templated copper nanoclusters as signal indicators. Sens. Actuators B Chem. 238: 828-833. https://doi.org/10.1016/j.snb.2016.07.083
- Feng X, Duan X, Liu L, Feng F, Wang S, Li Y, et al. 2009. Fluorescence logic-signal-based multiplex detection of nucleases with the assembly of a cationic conjugated polymer and branched DNA. Angew. Chem. Int. Ed. 48: 5316-5321. https://doi.org/10.1002/anie.200901555
- Deng J, Jin Y, Wang L, Chen G, Zhang C. 2012. Sensitive detection of endonuclease activity and inhibition using gold nanorods. Biosens. Bioelectron. 34: 144-150. https://doi.org/10.1016/j.bios.2012.01.034
- Lee C, Gang J. 2018. A Label-free detection of NdeI endonuclease activity by using DNA-templated silver nanoclusters. J. Nanosci. Nanotechnol. 18: 6339-6342. https://doi.org/10.1166/jnn.2018.15657
- Huang Y, Zhao S, Chen ZF, Liu YC, Liang H. 2011. Ultrasensitive endonuclease activity and inhibition detection using gold nanoparticle-enhanced fluorescence polarization. Chem. Commun. 47: 4763-4765. https://doi.org/10.1039/c1cc10325c
- Li W, Liu Z, Lin H, Nie Z, Chen J, Xu X, et al. 2010. Label-free colorimetric assay for methyltransferase activity based on a novel methylation-responsive DNAzyme strategy. Anal. Chem. 82: 1935-1941. https://doi.org/10.1021/ac902670c
- Zhao Y, Chen F, Wu Y, Dong Y, Fan C. 2013. Highly sensitive fluorescence assay of DNA methyltransferase activity via methylation-sensitive cleavage coupled with nicking enzyme-assisted signal amplification. Biosens. Bioelectron. 42: 56-61. https://doi.org/10.1016/j.bios.2012.10.022
- Bi S, Zhao T, Luo B, Zhu JJ. 2013. Hybridization chain reaction-based branched rolling circle amplification for chemiluminescence detection of DNA methylation. Chem. Commun. 49: 6906-6908. https://doi.org/10.1039/c3cc43353f
- Cao A, Zhang CY. 2012. Sensitive and Label-free DNA methylation detection by ligation-mediated hyperbranched rolling circle amplification. Anal. Chem. 84: 6199-6205. https://doi.org/10.1021/ac301186j
- Jia H, Li Z, Liu C, Cheng Y. 2010. Ultrasensitive detection of microRNAs by exponential isothermal amplification. Angew. Chem. Int. Ed. 49: 5498-5501. https://doi.org/10.1002/anie.201001375
- Zhou Z, Du Y, Zhang L, Dong S. 2012. A Label-free, G-quadruplex DNAzyme-based fluorescent probe for signal-amplified DNA detection and turn-on assay of endonuclease. Biosens. Bioelectron. 34: 100-105. https://doi.org/10.1016/j.bios.2012.01.024
- Jiang XQ, Guo SM, Zhou M, Ye BC. 2014. DNA-hosted Hoechst dyes: application for label-free fluorescent monitoring of endonuclease activity and inhibition. Analyst 139: 5682-5685. https://doi.org/10.1039/c4an01373e
- Zhao H, Dong J, Zho F, Li B. 2017. One facile fluorescence strategy for sensitive detection of endonuclease activity using DNA-templated copper nanoclusters as signal indicators. Sens. Acuators B Chem. 238: 828-833. https://doi.org/10.1016/j.snb.2016.07.083
- Rotaru A, Dutta S, Jentzsch E, Gothelf K, Mokhir A. 2010. Selective dsDNA-templated formation of copper nanoparticles in solution. Angew. Chem. Int. Ed. 49: 5665-5667. https://doi.org/10.1002/anie.200907256
- Maniotis AJ, Valyi-Nagy K, Karavitis J, Moses J, Boddipali V, Wang Y, et al. 2005. Chromatin organization measured by AluI restriction endonuclease changes with malignancy and is regulated by the extracellular matrix and the cytoskeleton. Am. J. Pathol. 166: 1187-1203. https://doi.org/10.1016/S0002-9440(10)62338-3
- Sandal T, Valyi-Nagy K, Spencer VA, Folberg R, Bissell MJ, Maniotis AJ. 2007. Epigenetic reversion of breast carcinoma phenotype is accompanied by changes in DNA sequestration as measured by AluI restriction enzyme. Am. J. Pathol. 170: 1739-1749. https://doi.org/10.2353/ajpath.2007.060922