DOI QR코드

DOI QR Code

Effect of Lactic Fermentation and Spray Drying Process on Bioactive Compounds from Ngoc Linh Ginseng Callus and Lactobacillus plantarum Viability

  • Dong, Lieu My (Faculty of Food Science and Technology, Ho Chi Minh City University of Food Industry) ;
  • Linh, Nguyen Thi Thuy (Faculty of Food Science and Technology, Ho Chi Minh City University of Food Industry) ;
  • Hoa, Nguyen Thi (Faculty of Food Science and Technology, Ho Chi Minh City University of Food Industry) ;
  • Thuy, Dang Thi Kim (Department of Plant Cell Technology, Institute of Tropical Biology) ;
  • Giap, Do Dang (Department of Plant Cell Technology, Institute of Tropical Biology)
  • Received : 2021.06.26
  • Accepted : 2021.08.25
  • Published : 2021.09.28

Abstract

Ngoc Linh ginseng is one of the most valuable endemic medicinal herbs in Vietnam. In this study, Ngoc Linh ginseng callus was fermented by Lactobacillus plantarum ATCC 8014 (at 6, 7, and 8 log CFU/ml) to evaluate the extraction efficiency of bioactive compounds. The post-fermentation solution was spray-dried using maltodextrin with or without Stevia rebaudiana (3% and 6% v/v) as the wall material. Bioactive compounds such as polyphenols, polysaccharides, and total saponins, and L. plantarum viability during fermentation and after spray-drying, as well as under simulated gastric digestion, were evaluated in this study. The results showed that probiotic density had a significant effect on bioactive compounds, and L. plantarum at 8 log CFU/ml showed the best results with a short fermentation time compared to other tests. The total content of polyphenols, polysaccharides, and saponins reached 5.16 ± 0.18 mg GAE/g sample, 277.2 ± 6.12 mg Glu/g sample, and 4.17 ± 0.15 mg/g sample, respectively after 20 h of fermentation at the initial density of L. plantarum (8 log CFU/ml). Although there was no difference in the particle structure of the preparation, the microencapsulation efficiency of the bioactive compound in the samples containing S. rebaudiana was higher than that with only maltodextrin. The study also indicated that adding S. rebaudiana improved the viability of L. plantarum in gastric digestion. These results showed that S. rebaudiana, a component stimulating probiotic growth, combined with maltodextrin as a co-prebiotic, improved the survival rate of L. plantarum in simulated gastric digestion.

Keywords

Acknowledgement

The authors express their deepest gratitude to the Faculty of Food Science and Technology, Ho Chi Minh City University of Food Industry, and Department of Plant Cell Technology, Institute of Tropical Biology, Ho Chi Minh City, Vietnam for providing research facilities.

References

  1. Konoshima T, Takasaki M, Ichiishi E, Murakami T, Tokuda H, Nishino H, et al. 1999. Cancer chemopreventive activity of majonoside-R2 from Vietnamese ginseng, Panax vietnamensis. Cancer Lett. 147: 11-16. https://doi.org/10.1016/S0304-3835(99)00257-8
  2. Jeong JJ, Van LTH, Lee SY, Eun SH, Nguyen MD, Park JH, et al. 2015. Anti-inflammatory effects of vina-ginsenoside R2 and majonoside R2 isolated from Panax vietnamensis and their metabolites in lipopolysaccharide-stimulated macrophages. Int. Immunopharmacol. 28: 700-706. https://doi.org/10.1016/j.intimp.2015.07.025
  3. dela Pena IJ, Kim HJ, Botanas CJ, De La Pena JB, Van Le TH, Nguyen MD, et al. 2017. The psychopharmacological activities of Vietnamese ginseng in mice: characterization of its psychomotor, sedative-hypnotic, antistress, anxiolytic, and cognitive effects. J. Ginseng Res. 41: 201-208. https://doi.org/10.1016/j.jgr.2016.03.005
  4. Yamasaki K. 2000. Bioactive saponins in Vietnamese ginseng, Panax vietnamensis. Pharm. Bbiol. 38: 16-24. https://doi.org/10.1076/phbi.38.6.16.5956
  5. Kevers C, Jacques P, Gaspar T, Thonart P, Dommes J. 2004. Comparative titration of ginsenosides by different techniques in commercial ginseng products and callus cultures. J. Chromatogr. Sci. 42: 554-560. https://doi.org/10.1093/chromsci/42.10.554
  6. Olennikov DN, Tankhaeva LM, Partilkhaev VV, Rokhin AV. 2012. Chemical constituents of Caragana bungei shoots. Rev. Bras. Farmacogn. 22: 490-496. https://doi.org/10.1590/s0102-695x2012005000010
  7. Kwon, JH, Belanger JM, Pare JJ. 2003. Optimization of microwave-assisted extraction (MAP) for ginseng components by response surface methodology. J. Agric. Food Chem. 51: 1807-1810. https://doi.org/10.1021/jf026068a
  8. Wu J, Lin L, Chau F. 2001. Ultrasound-assisted extraction of ginseng saponins from ginseng roots and cultured ginseng cells. Ultrason. Sonochem. 8: 347-352. https://doi.org/10.1016/S1350-4177(01)00066-9
  9. Chen XC, Zhu YG, Zhu LA, Huang C, Chen Y, Chen LM, et al. 2003. Ginsenoside Rg1 attenuates dopamine-induced apoptosis in PC12 cells by suppressing oxidative stress. Eur. J. Pharmacol. 473: 1-7. https://doi.org/10.1016/S0014-2999(03)01945-9
  10. Narayanan N, Roychoudhury P, Srivastava A. 2004. L (+) lactic acid fermentation and its product polymerization. Electron. J. Biotechnol. 7: 167-178.
  11. Leroy F, De VL. 2004. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci. Technol. 15: 67-78. https://doi.org/10.1016/j.tifs.2003.09.004
  12. Hur SJ, Lee SY, Kim YC, Choi I, Kim GB. 2014. Effect of fermentation on the antioxidant activity in plant-based foods. Food Chem. 160: 346-356. https://doi.org/10.1016/j.foodchem.2014.03.112
  13. Aymerich T, Artigas M, Garriga M, Monfort J, Hugas M. 2000. Effect of sausage ingredients and additives on the production of enterocin A and B by Enterococcus faecium CTC492. Optimization of in vitro production and anti-listerial effect in dry fermented sausages. J. Appl. Microbiol. 88: 686-694. https://doi.org/10.1046/j.1365-2672.2000.01012.x
  14. Patel R, Patel M, Suthar A. 2009. Spray drying technology: an overview. Indian J. Sci. Technol. 2: 44-47. https://doi.org/10.17485/ijst/2009/v2i10.3
  15. Menshutina NV, Gordienko MG, Voinovskiy AA, Zbicinski I. 2010. Spray drying of probiotics: process development and scale-up. Drying Technol. 28: 1170-1177. https://doi.org/10.1080/07373937.2010.483043
  16. Lieu MD, Dang TKT, Nguyen TH. 2017. Viability of microencapsulated Lactobacillus casei in synbiotic mayonnaise. Food Res. 1: 234-239. https://doi.org/10.26656/fr.2017.6.103
  17. Anekella K, Orsat V. 2013. Optimization of microencapsulation of probiotics in raspberry juice by spray drying. LWT-Food Sci. Technol. 50: 17-24. https://doi.org/10.1016/j.lwt.2012.08.003
  18. Lemus-Mondaca R, Ah-Hen K, Vega-Galvez A, Honores C, Moraga NO. 2016. Stevia rebaudiana leaves: effect of drying process temperature on bioactive components, antioxidant capacity and natural sweeteners. Plant Foods Hum. Nutr. 71: 49-56. https://doi.org/10.1007/s11130-015-0524-3
  19. Lopes SMS, Krausova G, Carneiro JWP, Goncalves JE, Goncalves RAC, de Oliveira AJB. 2017. A new natural source for obtainment of inulin and fructo-oligosaccharides from industrial waste of Stevia rebaudiana Bertoni. Food Chem. 225: 154-161. https://doi.org/10.1016/j.foodchem.2016.12.100
  20. Leamsomrong K, Suttajit M, Chantiratikul P. 2009. Flow injection analysis system for the determination of total phenolic compounds by using Folin-Ciocalteu assay. Asian J. Appl. Sci. 2: 184-190. https://doi.org/10.3923/ajaps.2009.184.190
  21. Lieu MD, Le TKN, Nguyen TL, Dang TKT, Do DG. 2020. Effect of calcium-alginate bead and Anoectochilus formosanus Hayata extract fluid on the viability of Lactobacillus plantarum ATCC 8014 and bioactive compounds in fermented apple juice. Food Res. 4: 652-658. https://doi.org/10.26656/fr.2017.4(3).385
  22. Yang Y, Chen L, Zhang XX, Guo Z. 2004. Microwave assisted extraction of major active ingredients in Panax quinquefolium L. J. Lliq. Chromatogr. Relat. Technol. 27: 3203-3211. https://doi.org/10.1081/JLC-200034881
  23. Bhat R, Suryanarayana LC, Chandrashekara KA, Krishnan P, Kush A, Ravikumar P. 2015. Lactobacillus plantarum mediated fermentation of Psidium guajava L. fruit extract. J. Biosci. Bioeng. 119: 430-432. https://doi.org/10.1016/j.jbiosc.2014.09.007
  24. Hou JW, Yu RC, Chou CC. 2000. Changes in some components of soymilk during fermentation with bifidobacteria. Food Res. Int. 33: 393-397. https://doi.org/10.1016/S0963-9969(00)00061-2
  25. Hashemi SMB, Khaneghah AM, Barba FJ, Nemati Z, Shokofti SS, Alizadeh F. 2017. Fermented sweet lemon juice (Citrus limetta) using Lactobacillus plantarum LS5: Chemical composition, antioxidant and antibacterial activities. J. Funct. Foods 38: 409-414. https://doi.org/10.1016/j.jff.2017.09.040
  26. Mousavi Z, Mousavi S, Razavi S, Emam-Djomeh Z, Kiani H. 2011. Fermentation of pomegranate juice by probiotic lactic acid bacteria. World J. Microbiol. Biotechnol. 27: 123-128. https://doi.org/10.1007/s11274-010-0436-1
  27. Rokka S, Rantamaki P. 2010. Protecting probiotic bacteria by microencapsulation: challenges for industrial applications. Eur. Food Res. Technol. 231: 1-12. https://doi.org/10.1007/s00217-010-1246-2
  28. Mousavi ZE, Mousavi SM, Razavi SH, Hadinejad M, EmamDjomeh Z, Mirzapour M. 2013. Effect of fermentation of pomegranate juice by Lactobacillus plantarum and Lactobacillus acidophilus on the antioxidant activity and metabolism of sugars, organic acids and phenolic compounds. Food Biotechnol. 27: 1-13. https://doi.org/10.1080/08905436.2012.724037
  29. Fritzen-Freire CB, Prudencio ES, Amboni RD, Pinto SS, Negrao-Murakami AN, Murakami FS. 2012. Microencapsulation of bifidobacteria by spray drying in the presence of prebiotics. Food Res. Int. 45: 306-312. https://doi.org/10.1016/j.foodres.2011.09.020
  30. Tchabo W, Ma Y, Kaptso GK, Kwaw E, Cheno RW, Xiao L, et al. 2019. Process analysis of mulberry (Morus alba) leaf extract encapsulation: Effects of spray drying conditions on bioactive encapsulated powder quality. Food Bioprocess Technol. 12: 122-146. https://doi.org/10.1007/s11947-018-2194-2
  31. Wilkowska A, Ambroziak W, Czyzowska A, Adamiec JJPJF, Sciences N. 2016. Effect of microencapsulation by spray-drying and freeze-drying technique on the antioxidant properties of blueberry (Vaccinium myrtillus) juice polyphenolic compounds. Polish J. Food Nutr. Sci. 66: 11-16. https://doi.org/10.1515/pjfns-2015-0015
  32. Avila-Reyes SV, Garcia-Suarez FJ, Jimenez MT, San Martin-Gonzalez MF, Bello-Perez LA. 2014. Protection of L. rhamnosus by spray-drying using two prebiotics colloids to enhance the viability. Carbohydr. Polym. 102: 423-430. https://doi.org/10.1016/j.carbpol.2013.11.033
  33. Kalita D, Saikia S, Gautam G, Mukhopadhyay R, Mahanta CLJL. 2018. Characteristics of synbiotic spray dried powder of litchi juice with Lactobacillus plantarum and different carrier materials. LWT 87: 351-360. https://doi.org/10.1016/j.lwt.2017.08.092
  34. Li S, Chen T, Dong S, Xiong Y, Wei H, Xu F. 2014. The effects of rebaudioside A on microbial diversity in mouse intestine. Food Sci. Technol. Res. 20: 459-467. https://doi.org/10.3136/fstr.20.459
  35. Ozdemir T, Ozcan T. 2020. Effect of steviol glycosides as sugar substitute on the probiotic fermentation in milk gels enriched with red beetroot (Beta vulgaris L.) bioactive compounds. LWT 134: 109851. https://doi.org/10.1016/j.lwt.2020.109851
  36. Lopes SMS, Francisco MG, Higashi B, de Almeida RTR, Krausova G, Pilau EJ, et al. 2016. Chemical characterization and prebiotic activity of fructo-oligosaccharides from Stevia rebaudiana (Bertoni) roots and in vitro adventitious root cultures. Carbohydr. Polym. 152: 718-725. https://doi.org/10.1016/j.carbpol.2016.07.043
  37. Kim HN, Yoon JW, Moon SA, Choi SB, Seo YM, Park J, et al. 2016. Fermentation and quality characteristics during the storage of greek-style yogurt supplemented with stevia leaf extract. J. Milk Sci. Biotechnol. 34: 51-57. https://doi.org/10.22424/jmsb.2016.34.1.51