References
- Etienne-Manneville S. 2010. From signaling pathways to microtubule dynamics: the key players. Curr. Opin. Cell Biol. 22: 104-111. https://doi.org/10.1016/j.ceb.2009.11.008
- Risinger AL, Giles FJ, Mooberry SL. 2009. Microtubule dynamics as a target in oncology. Cancer Treat. Rev. 35: 255-261. https://doi.org/10.1016/j.ctrv.2008.11.001
- Sasse F, Steinmetz H, Heil J, Hofle G, Reichenbach H. 2000. Tubulysins, new cytostatic peptides from myxobacteria acting on microtubuli. Production, isolation, physico-chemical and biological properties. J. Antibiot. 53: 879-885. https://doi.org/10.7164/antibiotics.53.879
- Khalil MW, Sasse F, Lunsdorf H, Elnakady YA, Reichenbach H. 2006. Mechanism of action of tubulysin, an antimitotic peptide from myxobacteria. ChemBioChem 7: 678-683. https://doi.org/10.1002/cbic.200500421
- Chai Y, Pistorius D, Ullrich A, Weissman KJ, Kazmaier U, Muller R. 2010. Discovery of 23 natural tubulysins from Angiococcus disciformis An d48 and Cystobacter SBCb004. Chem. Biol. 17: 296-309. https://doi.org/10.1016/j.chembiol.2010.01.016
- Steinmetz H, Glaser N, Herdtweck E, Sasse F, Reichenbach H, Hofle G. 2004. Isolation, crystal and solution structure determination, and biosynthesis of tubulysins - powerful inhibitors of tubulin polymerization from myxobacteria. Angew. Chem. Int. Ed. 43: 4888-4892. https://doi.org/10.1002/anie.200460147
- Domling A, Richter W. 2005. Myxobacterial epothilones and tubulysins as promising anticancer agents. Mol. Divers. 9: 141-147. https://doi.org/10.1007/s11030-005-1542-0
- Kaur G, Hollingshead M, Holbeck S, Schauer-Vukasinovic V, Camalier RF, Domling A, et al. 2006. Biological evaluation of tubulysin A: a potential anticancer and antiangiogenic natural product. Biochem. J. 396: 235-242. https://doi.org/10.1042/BJ20051735
- Murray BC, Peterson MT, Fecik RA. 2015. Chemistry and biology of tubulysins: antimitotic tetrapeptides with activity against drug resistant cancers. Nat. Prod. Rep. 32: 654-662. https://doi.org/10.1039/c4np00036f
- Reddy JA, Dorton R, Bloomfield A, Nelson M, Dircksen C, Vetzel M, et al. 2018. Pre-clinical evaluation of EC1456, a folate-tubulysin anti-cancer therapeutic. Sci. Rep. 8: 8943. https://doi.org/10.1038/s41598-018-27320-5
- Szigetvari NM, Dhawan D, Ramos-Vara JA, Leamon CP, Klein PJ, Ruple AA, et al. 2018. Phase I/II clinical trial of the targeted chemotherapeutic drug, folate-tubulysin, in dogs with naturally-occurring invasive urothelial carcinoma. Oncotarget 9: 37042-37053. https://doi.org/10.18632/oncotarget.26455
- Courter JR, Joseph Z, Hamilton JZ, Hendrick NR, Zaval M, Waight AB, et al. 2020. Structure-activity relationships of tubulysin analogues. Bioorg. Med. Chem. Lett. 30: 127241. https://doi.org/10.1016/j.bmcl.2020.127241
- Sandmann A, Sasse F, Muller R. 2004. Identification and analysis of the core biosynthetic machinery of tubulysin, a potent cytotoxin with potential anticancer activity. Chem. Biol. 11: 1071-1079. https://doi.org/10.1016/j.chembiol.2004.05.014
- Hyun H, Choi J, Kang D, Kim Y, Lee P, Chung GJY, et al. 2021. Screening of myxobacteria carrying tubulysin biosynthetic genes. Microbiol. Biotechnol. Lett. 49: 32-38. https://doi.org/10.48022/mbl.2010.10001
- Shin H, Youn J, An D, Cho K. 2013. Production of antimicrobial substances by strains of myxobacteria Corallococcus and Myxococcus. Kor. J. Microbiol. Biotechnol. 41: 44-51. https://doi.org/10.4014/kjmb.1210.10011
- Lee B, Lee C, Cho K. 2003. Isolation of dispersed mutants from wild myxobacteria. Kor. J. Microbiol. Biotechnol. 31: 342-347.
- Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular Cloning: a Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, N.Y., USA.
- Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, et al. 2019. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 47: W81-W87. https://doi.org/10.1093/nar/gkz310
- Johnson M, Zaretskaya I, Raytselis Y, Mereshuk Y, McGinnis S, Madden TL. 2008. NCBI BLAST: a better web interface. Nucleic Acids Res. 36: W5-W9. https://doi.org/10.1093/nar/gkn201
- Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, et al. 2015. CDD: NCBI's conserved domain database. Nucleic Acids Res. 43: D222-D226. https://doi.org/10.1093/nar/gku1221
- Shimkets LJ. 1986. Correlation of energy-dependent cell cohesion with social motility in Myxococcus xanthus. J. Bacteriol. 166: 837-841. https://doi.org/10.1128/jb.166.3.837-841.1986
- Chai Y, Shan S, Weissman KJ, Hu S, Zhang Y, Muller R. 2012. Heterologous expression and genetic engineering of the tubulysin biosynthetic gene cluster using Red/ET recombineering and inactivation mutagenesis. Chem. Biol. 19: 361-371. https://doi.org/10.1016/j.chembiol.2012.01.007
- Ullrich A, Chai Y, Pistorius D, Elnakady YA, Herrmann JE, Weissman KJ, et al. 2009. Pretubulysin, a potent and chemically accessible tubulysin precursor from Angiococcus disciformis. Angew. Chem. Int. Ed. Engl. 48: 4422-4425. https://doi.org/10.1002/anie.200900406
- Selva E, Gastaldo L, Saddler GS, Toppo G, Ferrari P, Carniti G, et al. 1996. Antibiotics A21459 A and B, new inhibitors of bacterial protein synthesis. I. Taxonomy, isolation and characterization. J. Antibiot. 49: 145-149. https://doi.org/10.7164/antibiotics.49.145
- Sasse F, Steinmetz H, Schupp T, Petersen F, Memmert K, Hofmann H, et al. 2002. Argyrins, immunosuppressive cyclic peptides from myxobacteria. I. Production, isolation, physicochemical and biological properties. J. Antibiot. 55: 543-551. https://doi.org/10.7164/antibiotics.55.543