DOI QR코드

DOI QR Code

거창화강암의 미세균열이 압열인장강도에 미치는 영향

Influence of Microcracks in Geochang Granite on Brazilian Tensile Strength

  • 박덕원 (한국지질자원연구원 지질환경연구본부)
  • Park, Deok-Won (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources)
  • 투고 : 2021.07.08
  • 심사 : 2021.08.18
  • 발행 : 2021.09.30

초록

거창화강암에서 발달하는 여섯 방향의 결(H2~R1)과 관련된 미세균열의 길이(①), 미세균열의 간격(②) 및 압열인장강도(③)의 특성을 분석하였다. 첫째, 결의 고유한 특성을 반영하는 위의 세 주요 인자에 대한 18개의 누적 그래프를 작성하였다. 세 면 및 세 결로 분류한 이들 그래프에 대한 종합 도면을 통하여, 길이, 간격 및 압열인장강도에 대한 28개의 파라미터를 결정하였다. 이들 파라미터 사이의 상관성 분석의 결과는 다음과 같다. 둘째, 위의 파라미터는 세 결 및 세 면 사이의 파라미터 값의 크기에 대한 정렬순서에 따라 여섯 그룹(I~VI)으로 분류하였다. 그룹 I 및 II에 속하는 파라미터의 값은 R(1번 결) < G(2번 결) < H(3번 결) 및 H2, 𝚫s, 𝚫L 및 oSmean), 지수(λLmean 및 λSmean), 기울기(amean) 그리고 이방성 계수(Anmean)에 대한 8개의 파라미터의 값은 R < G < H 그리고 H'(3번 면) < G'(2번 면) < R'(1번 면)의 순이다. 셋째, 세 면과 세 결 사이의 분포 형태에 있어서 주목할 만한 차이점은 다음과 같다. 세 면에 대한 도면으로부터, 두 적합선이 X축 상에서 만나는 두 점 사이의 거리에 해당하는 𝚫L, 𝚫s 및 𝚫σt의 값은 R' < H' < G'의 순으로 증가한다. 특히, 길이 및 압열인장강도와 관련된 R2 및 G2의 두 그래프는 서로 거의 평행하며 3번 면의 특성을 보여준다. 압열인장강도와 관련된 그래프 중에서, 3번 면에 대한 전체적인 모양은 2번 결의 전체적인 모양과 유사하다. 세 결에 대한 도면으로부터, 길이와 관련된 그래프의 기울기는 R

The characteristics of the microcrack lengths(①), microcrack spacings(②) and Brazilian tensile strengths(③) related to the six directions of rock cleavages(H2~R1) in Geochang granite were analyzed. First, the 18 cumulative graphs for the above three major factors representing unique characteristics of the rock cleavages were made. Through the general chart for these graphs classified into three planes and three rock cleavages, the 28 parameters on the length, spacing and Brazilian tensile strength have been determined. The results of correlation analysis among these parameters are summarized as follows. Second, the above parameters were classified into six groups(I~VI) according to the sorting order on the magnitude of parameter values among three rock cleavages and three planes. The values of parameters belonging to group I and II are in order of R(rift) < G(grain) < H(hardway) and H < G < R. The values of the 8 parameters on the length of line(os2, 𝚫s, 𝚫L and oSmean), the exponent(λLmean and λSmean), the slope(amean) and the anisotropy coefficient (Anmean) are in order of R < G < H and H'(hardway plane) < G'(grain plane) < R'(rift plane). Third, the noticeable differences in distribution patterns among the six types of charts for three planes and three rock cleavages are as follows. From the chart for three planes, the values of 𝚫L, 𝚫s and 𝚫σt, corresponding to the distance between two points where the two fitting lines meet on the X-axis, increase in the order of R' < H' < G'. In particular, the two graphs of R2 and G2 related to the length and Brazilian tensile strength are almost parallel to each other and show the distribution characteristics of hardway plane. Among the graphs related to the Brazilian tensile strength, the overall shape for hardway plane is similar to that for grain. From the chart for three rock cleavages, the slopes of the graphs related to the length increase in the order of R < G < H, while those of the graphs related to the spacing and Brazilian tensile strength decrease in the order of R < G < H. Lastly, the characteristics of variation among the six rock cleavages, the three planes and the three rock cleavages were visualized through the correlation chart among the above parameters from this study.

키워드

과제정보

이 연구는 한국지질자원연구원의 지질환경연구본부에서 수행하고 있는 '심지층 개발과 활용을 위한 지하심부 특성평가 기술개발' 과제에서 지원되었습니다. 본 논문의 심사과정에서 유익한 조언과 지적을 해주신 충북대학교의 서용석 교수님과 익명의 심사위원님께 깊은 사의를 표합니다.

참고문헌

  1. Chen, Y., Nishiyama, T., Kita, H. and Sato, T., 1997, Correlation between microfracture type and splitting planes of Inada granite and Kurihashi granodiorite. Journal of the Japan Society of Engineering Geology, 38.4, 196-204. https://doi.org/10.5110/jjseg.38.196
  2. Dai, F. and Xia, K., 2010, Loading rate dependence of tensile strength anisotropy of Barre granite. Pure and Applied Geophysics. 167, 1419-1432. https://doi.org/10.1007/s00024-010-0103-3
  3. Fujii, Y., Takemura, T., Takahashi, M., Weiren, L.I.N. and Akaiwa, S., 2005, The feature of uniaxial tensile fractures in granite and their relation to rock anisotropy. Journal of the Japan Society of Engineering Geology, 46, 227-231. https://doi.org/10.5110/jjseg.46.227
  4. Jang, B.A. and Oh, S.H., 2001, Mechanical anisotropy dependent on the rock fabric in the Pocheon granite and its relationship with microcracks. The Journal of Engineering Geology, 11, 191-203.
  5. Kim, M.K., 2015, The mechanical properties of the Geochang granite. Tunnel and Underground Space, 25, 24-36. https://doi.org/10.7474/TUS.2015.25.1.024
  6. Kudo, Y., Hashimoto, K., Sano, O. and Nakagawa, K., 1986, The empirical knowledge of quarryman and physical properties of granite. Japanese Society of Soil Mechanics and Foundation Engineering, 34, 47-51.
  7. Kudo, Y., Hashimoto, K., Sano, O. and Nakagawa, K., 1987, Relation between physical anisotropy and microstructures of granitic rock in Japan. In 6th ISRM Congress. International Society for Rock Mechanics.
  8. Lee, S.E., Cho, S.H., Seo, Y.S., Yang, H.S. and Park, H.M., 2001, The effect of microcracks on the mechanical anisotropy of granite. Material science Research International, 7, 7-13.
  9. Lin, W. and Takahashi, M., 2008, Anisotropy of strength and deformation of Inada granite under uniaxial tension. Chinese Journal of Rock Mechanics and Engineering, 27, 2463-2472. https://doi.org/10.3321/j.issn:1000-6915.2008.12.011
  10. Park, D.W., 2007, Orientations of vertical rift and grain planes in Mesozoic granites, Korea. The Journal of the Petrological Society of Korea, 16, 12-26.
  11. Park, D.W., 2011, Characteristics of the rock cleavage in Jurassic granite, Hapcheon. The Journal of the Petrological Society of Korea, 20, 219-230. https://doi.org/10.7854/JPSK.2011.20.4.219
  12. Park, D.W., 2015a, Characteristics of the rock cleavage in Jurassic granite, Geochang. The Journal of the Petrological Society of Korea, 24(3), 153-164. https://doi.org/10.7854/JPSK.2015.24.3.153
  13. Park, D.W., 2015b, Evaluation for rock cleavage using distribution of microcrack lengths. The Journal of the Petrological Society of Korea, 24(3), 165-180. https://doi.org/10.7854/JPSK.2015.24.3.165
  14. Park, D.W., 2016a, Evaluation for rock cleavage using distribution of microcrack spacings (I). The Journal of the Petrological Society of Korea, 25(1), 13-27. https://doi.org/10.7854/JPSK.2016.25.1.13
  15. Park, D.W., 2016b, Evaluation for rock cleavage using distribution of microcrack spacings (II). The Journal of the Petrological Society of Korea, 25(2), 151-163. https://doi.org/10.7854/JPSK.2016.25.2.151
  16. Park, D.W., 2016c, Evaluation for rock cleavage using distribution of microcrack spacings (III). The Journal of the Petrological Society of Korea, 25(4), 1-14. https://doi.org/10.7854/JPSK.2016.25.1.1
  17. Park, D.W., 2020a, Evaluation for rock cleavage using distributional characteristics of microcracks and Brazilian tensile strengths. Korean Journal of Mineralogy and Petrology, 33, 99-114. https://doi.org/10.22807/KJMP.2020.33.2.99
  18. Park, D.W., 2020b, Mechanical characteristics of the rift, grain and hardway planes in Jurassic granites. Korean Journal of Mineralogy and Petrology, 33, 273-291. https://doi.org/10.22807/KJMP.2020.33.3.273
  19. Park, D.W., Kim, H.C., Lee, C.B., Hong, S.S., Chang, S.W. and Lee, C.W., 2004, Characteristics of the rock cleavage in Jurassic granite, Pocheon. The Journal of the Petrological Society of Korea, 13, 133-141.
  20. Park, D.W. and Kim, K.S., 2021, Influence of microcrack on Brazilian tensile strength of Jurassic granite in Hapcheon. Korean Journal of Mineralogy and Petrology, 34, 41-56. https://doi.org/10.22807/KJMP.2021.34.1.41
  21. Park, D.W., Kim, K.S. and Lee, Y.M., 2017, Evaluation for rock cleavage using distribution of Brazilian tensile strength, Korean Intellectual Property Office, 10-1734788, 1-25.
  22. Park, D.W., Seo, Y.S., Jeong, G.C. and Kim, Y.K., 2001, Microscopic analysis of the rock cleavage for Jurassic granite in Korea. The Journal of Engineering Geology, 11, 51-62.
  23. Peng, S.S. and Johnson, A.M., 1972, Crack growth and faulting in cylindrical specimens of Chelmsford granite. International Journal of Rock Mechanics and Mining, 9, 37-86. https://doi.org/10.1016/0148-9062(72)90050-2
  24. Seo, Y.S. and Park, D.W., 2003, Mechanical anisotropy of Jurassic granite in Korea. The Journal of Engineering Geology, 13, 257-266. https://doi.org/10.3969/j.issn.1004-9665.2005.02.022
  25. Zhuang, L., Diaz, M. B., Jung, S. G. and Kim, K. Y., 2016, Cleavage dependent indirect tensile strength of Pocheon granite based on experiments and DEM simulation. Tunnel and Underground Space, 26.4, 316-326.