DOI QR코드

DOI QR Code

Higher Order Uniformly Convergent Numerical Scheme for Singularly Perturbed Reaction-Diffusion Problems

  • Received : 2020.04.10
  • Accepted : 2021.02.08
  • Published : 2021.09.30

Abstract

In this paper, a uniformly convergent numerical scheme is designed for solving singularly perturbed reaction-diffusion problems. The problem is converted to an equivalent weak form and then a Galerkin finite element method is used on a piecewise uniform Shishkin mesh with linear basis functions. The convergence of the developed scheme is proved and it is shown to be almost fourth order uniformly convergent in the maximum norm. To exhibit the applicability of the scheme, model examples are considered and solved for different values of a singular perturbation parameter ε and mesh elements. The proposed scheme approximates the exact solution very well.

Keywords

Acknowledgement

The author would like to thank the referees for their constructive comments and suggestions.

References

  1. E. B. Becker, G. F. Carey and J. T. Oden, Finite Elements, An Introduction: Volume I, Printice-Hall Inc, Englewood Cliffs, New jersey, 1981.
  2. M. Chandru, T. Prabha & V. Shanthi, A Hybrid Difference Scheme for a Second-Order Singularly Perturbed Reaction-Diffusion Problem with Non-smooth Data, Int. J. Appl. Comput. Math, 1(2015), 87-100. https://doi.org/10.1007/s40819-014-0004-8
  3. C. Clavero, R. K. Bawa and S. Natesan, A robust second-order numerical method for global solution and global normalized flux of singularly perturbed self-adjoint boundary-value problems, Int. J. Comput. Math., 86(10-11)(2009), 1731-1745. https://doi.org/10.1080/00207160802624141
  4. G. File and F. Edosa, Higher order compact finite difference method for singularly perturbed one dimensional reaction-diffusion problems, J. Nigerian Math. Soc., 36(3)(2017), 491-502.
  5. G. File and Y. N. Reddy, Domain Decomposition Method for Solving Singular Perturbation Problems, International Journal of Applied Science and Engineering, 11(4)(2013), 433-448.
  6. F. W. Gelu, G. F. Duressa and T. A.Bullo, Sixth-order compact finite difference method for singularly perturbed 1D reaction diffusion problems, J. of Taibah University for Science, 11(2)(2017), 302-308. https://doi.org/10.1016/j.jtusci.2015.12.010
  7. F. W. Galu, G. F. Duressa and T. A. Bullo, Tenth Order Compact Finite Difference Method for Solving Singularly Perturbed 1D Reaction-Diffusion Equations, International Journal of Applied Science and Engineering, 8(3)(2016), 15-24. https://doi.org/10.24107/ijeas.255031
  8. M. K. Kadalbajoo and P. Arora, B-Spline collocation method for a singularly perturbed reaction-diffusion problem using artificial viscosity, Int. J. Comput. Methods, 6(1)(2009), 2341.
  9. N. Kopteva and E. O'Riordan, Shishkin meshes in the numerical solution of singularly perturbed differential equations, Int. J. Numer. Anal. Model., 1(1)(2004) 1-18. https://doi.org/10.4208/ijnam.OA-2004-1101
  10. M. Kumar and S. C. Rao, High order parameter-robust numerical method for singularly perturbed reaction-diffusion problems, Appl. Math. Comput., 216(4)(2010) 1036-1046. https://doi.org/10.1016/j.amc.2010.01.121
  11. J. J. Miller, H. MacMullen, E. O'Riordan and G. I. Shishkin, A second-order parameter- uniform overlapping Schwarz method for reaction-diffusion problems with boundary layers, J. Comput. Appl. Math., 130(1-2)(2001), 231-244. https://doi.org/10.1016/S0377-0427(99)00380-5
  12. J. J. Miller, E. O'Riordan and G. I. Shishkin, Fitted numerical methods for singular perturbation problems: error estimates in the maximum norm for linear problems in one and two dimensions, World Scientific, New Jersey, 2012.
  13. S. Natesan, R. K. Bawa and C. A. Clavero, Uniformly convergent compact numerical scheme for the normalized flux of singularly perturbed reaction-diffusion problems, Int. J. Inf. Syst. Sci., 3(2)(2007), 207-221.
  14. S. Natesan and R. K. Bawa, Second-order numerical scheme for singularly perturbed reaction-diffusion Robin problems, SIAM J Numer Anal, 2(3-4)(2007), 177-192.
  15. A. H. Nayfeh, Introduction to perturbation techniques, John Wiley & Sons, New York, 2011.
  16. K. Phaneendra, K. M. Latha and Y. N. Reddy, A Fitted arithmetic average three-point finite difference method for singularly Perturbed two-point boundary value Problems with dual layers, International Journal of Applied Science and Engineering, 13(3)(2015), 205-216.
  17. S. C. Rao and M. A. Kumar, A uniformly convergent exponential spline difference scheme for singularly perturbed reaction-diffusion problems, Neural Parallel Sci. Comput., 18(2)(2010) 121-136.
  18. J. N. Reddy, An introduction to the finite element method, McGraw-Hill, New York, 1993.
  19. E. R. O'Malley, Singular perturbation methods for ordinary differential equations, Springer-Verlag, New York, 1991.
  20. S. Russell, Sparse grid methods for singularly perturbed problems, PhD thesis, National University of Ireland, 2016.
  21. M. K. Singh, S. Natesan, Richardson extrapolation technique for singularly perturbed system of parabolic partial differential equations with exponential boundary layers, Appl. Math. Comput., 333(2018) 254-75. https://doi.org/10.1016/j.amc.2018.03.059
  22. F. Wondimu, G. File and T. Aga, Fourth order compact finite difference method for solving singularly perturbed 1D reaction diffusion equations with Dirichlet boundary conditions, Momona Ethiopian J. of Science, 8(2)(2016) 168-181. https://doi.org/10.4314/mejs.v8i2.5
  23. L. Zhilin, Q. Zhonghua and T. Tao, Numerical Solutions of Differential Equations: Introduction to Finite Difference and Finite Element Methods, Cambridge University Press, New york, 2018.