과제정보
This work was supported by the Agency for Defense Development, South Korea, under Grant UD200010DD and Low frequency Underwater Research Laboratory.
참고문헌
- Y. Zhou, A. Song, and F. Tong, "Underwater acoustic channel characteristics and communication performance at 85 kHz," J. Acoust. Soc. Am. 142, EL350-EL355 (2017). https://doi.org/10.1121/1.5006141
- D. B. Kilfoyle and A. B. Baggeroer, "The state of the art in underwater acoustic telemetry," IEEE J. Ocean Eng. 25, 4-27 (2000). https://doi.org/10.1109/48.820733
- Y. Kida, M. Deguchi, and T. Shimura, "Experimental results for a high-rate underwater acoustic communication in deep sea for a manned submersible SHINKAI 6500," J. Marine Acoust. Soc. Jpn. 43, 197-203 (2018).
- M. Stojanovic, J. Catipovic, and J. G. Proakis, Acoustic Signal Processing for Ocean Exploration (Springer, Dordrecht, 1993), pp.607-612.
- M. Stojanovic, J. Catipovic, J . G. Proakis, "Adaptive multichannel combining and equalization for underwater acoustic communications," J. Acoust. Soc. Am. 94, 1621-1631 (1993). https://doi.org/10.1121/1.408135
- A. Plaisant, "Long range acoustic communications," Proc. IEEE OCEANS'98 Conference, 1 (1998).
- T. Shimura, Y. Watanabe, H. Ochi, and T. Hattori, "Basic at-sea experiment for long horizontal time-reversal communication in deep ocean," Proc. Acoustics '08, 10375-10380 (2008).
- H. C. Song, W. A. Kuperman, and W. S. Hodgkiss, "Basin-scale time reversal communications," J. Acoust. Soc. Am. 125, 212-217 (2009). https://doi.org/10.1121/1.3021435
- H. C. Song and M. Dzieciuch, "Feasibility of global-scale synthetic aperture communications," J. Acoust. Soc. Am. 125, 8-10 (2009). https://doi.org/10.1121/1.3035830
- T. Shimura, H. Ochi, Y. Watanabe, and T. Hatton, "Experiment results of time-reversal communication at the range of 300 km," Jpn. J. Appl. Phys. 49, 07HG11 (2010).
- H. C. Song, S. Cho, T. Kang, W. S. Hodgkiss, and J. R. Preston, "Long-range acoustic communication in deep water using a towed array," J. Acoust. Soc. Am. 129, EL71-EL75 (2011). https://doi.org/10.1121/1.3554707
- T. Shimura, H. Ochi, and Y. Watanabe, "Time - reversal communication in deep ocean - results of recent experiments," Proc. 2011 IEEE Symposium on Underwater Technology and Workshop on Scienfitic Use of Submarine Cables and Related Technologies, 1-5 (2011).
- H. C. Song, "Acoustic communication in deep water exploiting multiple beams with a horizontal array," J. Acoust. Soc. Am. 132, EL81-EL87 (2012). https://doi.org/10.1121/1.4734242
- H. C. Song and W. S. Hodgkiss, "Diversity combining for long-range acoustic communication in deep water," J. Acoust. Soc. Am. 132, EL68-EL73 (2012). https://doi.org/10.1121/1.4731639
- T. Kang, H. C. Song, and W. S. Hodgkiss,, "Long-range multi-carrier acoustic communication in deep water using a towed horizontal array," J. Acoust. Soc. Am. 131, 4665-4671 (2012). https://doi.org/10.1121/1.4711009
- T. Shimura, Y. Watanabe, H. Ochi, and H. C. Song, "Long-range time reversal communication in deep water : Experimental results," J. Acoust. Soc. Am. 132, EL49-EL53 (2012). https://doi.org/10.1121/1.4730038
- T. Shimura, H. Ochi, and H. C. Song, "Experimental demonstration of multiuser communication in deep water using time reversal," J. Acoust. Soc. Am. 134, 3223-3229 (2013). https://doi.org/10.1121/1.4818839
- Z. Liu. K. Yoo, T. C. Yang, S. E. Cho, H. C. Song, and D. E. Ensberg "Long-range double-differentially coded spread-spectrum acoustic communications with a towed array," IEEE J. Ocean Eng. 39, 482-490 (2014). https://doi.org/10.1109/JOE.2013.2264994
- T. Shimura, Y. Kida, M. Deguchi, Y. Watanabe, and H. Ochi, "At-sea experiment of adaptive time-reversal multiuser communication in the deep ocean," Jpn. J. Appl. Phys. 54, 07HG02 (2015). https://doi.org/10.7567/JJAP.54.07HG02
- J. Lee, H. Lee, K. Kim, and W. Kim, "Sea trial results of long range underwater acoustic communication based on frequency modulation in the East Sea" (in Korean), J. Acoust. Soc. Kr. 38, 371-377 (2019).
- H. S. Kim, S. H. Kim, J. W. Choi, and H. S. Bae,, "Bidirectional equalization based on error propagation detection in long-range underwater acoustic communication," Jpn. J. Appl. Phys. 58, SGGF01 (2019). https://doi.org/10.7567/1347-4065/ab1130
- H. Park, D. Kim, J. S. Kim, J. Hahn, and J. Park, "Performance improvement of long-range underwater acoustic communication in deep water using spatiotemporal diversity" (in Korean), J. Acoust. Soc. Kr. 38, 587-592 (2019).
- D. Kim, H. Park, J. S. Kim, J. Hahn, and J. Park, "Performance analysis of underwater acoustic communication based on beam diversity in deep water" (in Korean), J. Acoust. Soc. Kr. 38, 678-686 (2019).
- G. F. Edelmann, T. Akai, W. S. Hodgkiss, S. Kim, W. A. Kuperman, and H. C. Song, "An initial demonstration of underwater acoustic communication using time reversal," IEEE J. Ocean Eng. 27, 602-609 (2002). https://doi.org/10.1109/JOE.2002.1040942
- G. F. Edelmann, H. C. Song, S. Kim, W. S. Hodgkiss, W. A. Kuperman, and T. Akai, "Underwater acoustic communication using time reversal," IEEE J. Ocean Eng. 30, 852-864 (2005). https://doi.org/10.1109/JOE.2005.862137
- H. C. Song, W. S. Hodgkiss, W. A. Kuperman, M. Stevenson, and T. Akai, "Improvement of time-reversal communications using adaptive channel equalizers," IEEE J. Ocean Eng. 31, 487-496 (2006). https://doi.org/10.1109/JOE.2006.876139
- M. I. Skolnik, Introduction to Radar Systems (McGraw-Hill, Boston, 2001), pp. 411-420.
- H. C. Song, W. S. Hodgkiss, W. A. Kuperman, W. J. Higley, K. Raghukumar, T. Akai, and M. Stevenson, "Spatial diversity in passive time reversal communication," J. Acoust. Soc. Am. 120, 2067-2076 (2006). https://doi.org/10.1121/1.2338286
- H. C. Song, "An overview of underwater time-reversal communication," IEEE J. Ocean Eng. 41, 644-655 (2016). https://doi.org/10.1109/JOE.2015.2461712