References
- F. Black, M. Scholes, The pricing of options and corporate liabilities, J. Political. Econ, 81 (3) (1973) 637-659. https://doi.org/10.1086/260062
- R. C. Merton, Theory of rational option pricing, Bell J. Econ. Manag. Sci, 4 (1) (1973) 141-183. https://doi.org/10.2307/3003143
- J. Persson, L. Von Sydow, Pricing European multi-asset options using a space-time adoptive F. D-method, Comput. Visualization. Sci, 10 (4) (2007) 173-183. https://doi.org/10.1007/s00791-007-0072-y
- K. in't Hout,R. Volk, Numerical solution of a two-asset option valuation PDE by ADI finite difference discretization, AID. Conf. Proc, 1648 (2015) 850054.
- D. Joeng, J. Kim, I. -S Wee, An accurate and efficient numerical method for Black-Scholes equations, Commun. Korean. Soc, 24 (4) (2009) 617-628. https://doi.org/10.4134/CKMS.2009.24.4.617
- O. Pattersson, E. Larsson,G. Marcusson, J. Persson, Improved radial basis function methods for multi-dimensional option pricing, J. Comput. Appl. Math, 222 (1) (2008) 82-93. https://doi.org/10.1016/j.cam.2007.10.038
- L. V. Ballestra, G. Pacelli, Pricing European and American options with two stocastic factors: a highly efficient radial basis function approach, J. Econom. Dynam. Control, 37 (6) (2013) 1142-1167. https://doi.org/10.1016/j.jedc.2013.01.013
- J. A. Rad, K. Parand, L. V. Ballestra, Pricing European and American options by radial basis point interpolation, Appl. Math. Comput, 251 (2015) 363-377. https://doi.org/10.1016/j.amc.2014.11.016
- V. Shcherbakov. E. Larsson, Radial basis function partition for unity methods for pricing vanilla basket options, Comput. Math. Appl, 71 (1) (2016) 185-200. https://doi.org/10.1016/j.camwa.2015.11.007
- Y. Hon, X. Mao, Aradial basis function method for for solving option pricing model, Finac. Eng, 8 (1) (1999) 31-49.
- Sh. Zhang, Radial basis functions method for valuing options: A multinomial tree approach, J. Comput. Appl. Math, 319 (2017) 97-107. https://doi.org/10.1016/j.cam.2016.12.036
- Y. Chen, H. Yu, X. Meng, X. Xie, M. Hou and J. Chevalier , Numerical solving of the generalized Black-Scholes differential equations using Lequerre neural networks, Digit. Signal. Process, 112 (2021) 103003. https://doi.org/10.1016/j.dsp.2021.103003
- X. Liu, Y. Cao, C. Ma, L. Shen, Wavelet-based option pricing: An emprical study, Eur. J. Oper. Res., 272 (2019) 1132-1142. https://doi.org/10.1016/j.ejor.2018.07.025
- P. Roul, V. M. K. Prasad Goura, A new higher order compact finite difference method for generalised Black-Scholes partial differential equations: European call option, J. Comput. Appl. Math, 363 (2020) 464-484. https://doi.org/10.1016/j.cam.2019.06.015
- M. Zaka Ullah, An RBF-FD sparse scheme to simulate high dimensional Black-Scholes partial differential equations, Comput. Math. Appl, (2019) DOI: http://doi.org/10.1016/j.Camwa.2019.07.011.
- W. R. Madych, Miscellaneaus error bounds for multiquadratic and related interpolants, Comput. Math. Appl, 24 (12) (1992) 121-130. https://doi.org/10.1016/0898-1221(92)90175-H
- M. Buhmann, N. Oyn, Spectral convergence of multiquadratic interpolation, Proc. Edinb. Math. Soc, 36 (2) (1993) 319-333. https://doi.org/10.1017/S0013091500018411
- H. Wendland, Scattered Data Approximation, Cambridge University Press, Cambridge, 2005.
- W. Margrabe, The value of an option to exchnge one-asset for another, J. Finac, 33 (1978) 177-186. https://doi.org/10.1111/j.1540-6261.1978.tb03397.x
- H. Johnson, Options on the minimum or the maximum of several assets, J. Finac. Quant. Anal, 22 (1987) 277-283. https://doi.org/10.2307/2330963
- M. Rubinste, Somewhere over the rainbow, Risk Magazine, 4 (1995) 63-66.
- R. Stulz, Options in the minimum or the maximum of two risky assets, J. Finac. Econ, 10 (1982) 161-185. https://doi.org/10.1016/0304-405X(82)90011-3
- C.H. Tsai, J. Kolibal, M. Li, The golden section search algorithm for finding a good shape parameter for meshless colocation methods, Eng. Anal. Bound. Elem., 34 (2010) 738-746. https://doi.org/10.1016/j.enganabound.2010.03.003