DOI QR코드

DOI QR Code

AN EFFICIENT HYBRID NUMERICAL METHOD FOR THE TWO-ASSET BLACK-SCHOLES PDE

  • DELPASAND, R. (DEPARTMENT OF APPLIED MATHEMATICS AND MAHANI, MATHEMATICAL RESEARCH CENTER FACULTY OF MATHEMATICS AND COMPUTER SHAHID BAHONAR UNIVERSITY OF KERMAN) ;
  • HOSSEINI, M.M. (DEPARTMENT OF APPLIED MATHEMATICS AND MAHANI, MATHEMATICAL RESEARCH CENTER FACULTY OF MATHEMATICS AND COMPUTER SHAHID BAHONAR UNIVERSITY OF KERMAN)
  • Received : 2021.03.31
  • Accepted : 2021.06.28
  • Published : 2021.09.25

Abstract

In this paper, an efficient hybrid numerical method for solving two-asset option pricing problem is presented based on the Crank-Nicolson and the radial basis function methods. For this purpose, the two-asset Black-Scholes partial differential equation is considered. Also, the convergence of the proposed method are proved and implementation of the proposed hybrid method is specifically studied on Exchange and Call on maximum Rainbow options. In addition, this method is compared to the explicit finite difference method as the benchmark and the results show that the proposed method can achieve a noticeably higher accuracy than the benchmark method at a similar computational time. Furthermore, the stability of the proposed hybrid method is numerically proved by considering the effect of the time step size to the computational accuracy in solving these problems.

Keywords

References

  1. F. Black, M. Scholes, The pricing of options and corporate liabilities, J. Political. Econ, 81 (3) (1973) 637-659. https://doi.org/10.1086/260062
  2. R. C. Merton, Theory of rational option pricing, Bell J. Econ. Manag. Sci, 4 (1) (1973) 141-183. https://doi.org/10.2307/3003143
  3. J. Persson, L. Von Sydow, Pricing European multi-asset options using a space-time adoptive F. D-method, Comput. Visualization. Sci, 10 (4) (2007) 173-183. https://doi.org/10.1007/s00791-007-0072-y
  4. K. in't Hout,R. Volk, Numerical solution of a two-asset option valuation PDE by ADI finite difference discretization, AID. Conf. Proc, 1648 (2015) 850054.
  5. D. Joeng, J. Kim, I. -S Wee, An accurate and efficient numerical method for Black-Scholes equations, Commun. Korean. Soc, 24 (4) (2009) 617-628. https://doi.org/10.4134/CKMS.2009.24.4.617
  6. O. Pattersson, E. Larsson,G. Marcusson, J. Persson, Improved radial basis function methods for multi-dimensional option pricing, J. Comput. Appl. Math, 222 (1) (2008) 82-93. https://doi.org/10.1016/j.cam.2007.10.038
  7. L. V. Ballestra, G. Pacelli, Pricing European and American options with two stocastic factors: a highly efficient radial basis function approach, J. Econom. Dynam. Control, 37 (6) (2013) 1142-1167. https://doi.org/10.1016/j.jedc.2013.01.013
  8. J. A. Rad, K. Parand, L. V. Ballestra, Pricing European and American options by radial basis point interpolation, Appl. Math. Comput, 251 (2015) 363-377. https://doi.org/10.1016/j.amc.2014.11.016
  9. V. Shcherbakov. E. Larsson, Radial basis function partition for unity methods for pricing vanilla basket options, Comput. Math. Appl, 71 (1) (2016) 185-200. https://doi.org/10.1016/j.camwa.2015.11.007
  10. Y. Hon, X. Mao, Aradial basis function method for for solving option pricing model, Finac. Eng, 8 (1) (1999) 31-49.
  11. Sh. Zhang, Radial basis functions method for valuing options: A multinomial tree approach, J. Comput. Appl. Math, 319 (2017) 97-107. https://doi.org/10.1016/j.cam.2016.12.036
  12. Y. Chen, H. Yu, X. Meng, X. Xie, M. Hou and J. Chevalier , Numerical solving of the generalized Black-Scholes differential equations using Lequerre neural networks, Digit. Signal. Process, 112 (2021) 103003. https://doi.org/10.1016/j.dsp.2021.103003
  13. X. Liu, Y. Cao, C. Ma, L. Shen, Wavelet-based option pricing: An emprical study, Eur. J. Oper. Res., 272 (2019) 1132-1142. https://doi.org/10.1016/j.ejor.2018.07.025
  14. P. Roul, V. M. K. Prasad Goura, A new higher order compact finite difference method for generalised Black-Scholes partial differential equations: European call option, J. Comput. Appl. Math, 363 (2020) 464-484. https://doi.org/10.1016/j.cam.2019.06.015
  15. M. Zaka Ullah, An RBF-FD sparse scheme to simulate high dimensional Black-Scholes partial differential equations, Comput. Math. Appl, (2019) DOI: http://doi.org/10.1016/j.Camwa.2019.07.011.
  16. W. R. Madych, Miscellaneaus error bounds for multiquadratic and related interpolants, Comput. Math. Appl, 24 (12) (1992) 121-130. https://doi.org/10.1016/0898-1221(92)90175-H
  17. M. Buhmann, N. Oyn, Spectral convergence of multiquadratic interpolation, Proc. Edinb. Math. Soc, 36 (2) (1993) 319-333. https://doi.org/10.1017/S0013091500018411
  18. H. Wendland, Scattered Data Approximation, Cambridge University Press, Cambridge, 2005.
  19. W. Margrabe, The value of an option to exchnge one-asset for another, J. Finac, 33 (1978) 177-186. https://doi.org/10.1111/j.1540-6261.1978.tb03397.x
  20. H. Johnson, Options on the minimum or the maximum of several assets, J. Finac. Quant. Anal, 22 (1987) 277-283. https://doi.org/10.2307/2330963
  21. M. Rubinste, Somewhere over the rainbow, Risk Magazine, 4 (1995) 63-66.
  22. R. Stulz, Options in the minimum or the maximum of two risky assets, J. Finac. Econ, 10 (1982) 161-185. https://doi.org/10.1016/0304-405X(82)90011-3
  23. C.H. Tsai, J. Kolibal, M. Li, The golden section search algorithm for finding a good shape parameter for meshless colocation methods, Eng. Anal. Bound. Elem., 34 (2010) 738-746. https://doi.org/10.1016/j.enganabound.2010.03.003