Acknowledgement
This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(NRF-2013R1A1A2009687). The third author of this work was financially supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT and Future Planning(2017R1E1A1A03070059).
References
- D.L. Weaire and S. Hutzler, The physics of foams, Oxford University Press, Oxford, 2000.
- R.K. Prud'homme and S.A. Khan (Eds.), Foams: theory, measurements and applications, Dekker, New York, 1996.
- S. Hilgenfeldt, S.A. Koehler and H.A. Stone (2001). Dynamics of coarsening foams: Accelerated and self-limiting drainage, Phys. Rev. Lett., 86, 4704-4707, https://doi.org/10.1103/PhysRevLett.86.4704.
- H. Caps, S.J. Cox, H. Decauwer, D. Weaire and N. Vandewalle (2005). Capillary rise in foams under microgravity, Colloids and Surfaces A: Physicochemical Engineering Aspects, 261, 131-134, https://doi.org/10.1016/j.colsurfa.2004.10.128.
- V. Carrier, S. Destouesse and A. Colin (2002). Foam drainage: A film contribution?, Physical Review E, 65, 061404, https://doi.org/101103/PhysRevE.65.061404. https://doi.org/10.1103/PhysRevE.65.061404
- N. Denkov, S. Tcholakova and N. Politova-Brinkova (2020). Physicochemical control of foam properties, Current Opinion in Colloid & Interface Science, 50, 101376 https://doi.org/10.1016/j.cocis.2020.08.001.
- A.-L. Fameau and S. Fujii (2020) Stimuli-responsive liquid foams: From design to applications, Current Opinion in Colloid & Interface Science, 50, 101380, https://doi.org/10.1016/j.cocis.2020.08.005.
- J.J. Bikerman, Foams: Theory and Industrial Applications, Springer, New York, 1973.
- G. Verbist, D. Weaire and A.M. Kraynik (1996). The foam drainage equation, J. Phys.: Condens. Matter 8, 3715-3731, http://iopscience.iop.org/0953-8984/8/21/002. https://doi.org/10.1088/0953-8984/8/21/002
- M.A. Helal and M.S. Mehanna (2007). The tanh method and Adomian decomposition method for solving the foam drainage equation, Appl. Math. Comput., 190(1) 599-609, https://doi.org/10.1016/j.amc.2007.01.055.
- F. Khani, S. Hamedi-Nezhad, M.T. Darvishi and S.-W. Ryu (2009). New solitary wave and periodic solutions of the foam drainage equation using the Exp-function method, Nonlinear Anal. RWA, 10, 1904-1911, doi:10.1016/j.nonrwa.2008.02.030.
- M.T. Darvishi and F. Khani (2009). A series solution of the foam drainage equation, Comput. Math. Appl., 58, 360-368, doi:10.1016/j.camwa.2009.04.007.
- S. Arbabi, A. Nazari, M.T. Darvishi (2016). A semi-analytical solution of foam drainage equation by Haar wavelets method, Optik, 127, 5443-5447, http://dx.doi.org/10.1016/j.ijleo.2016.03.032.
- P.M. Kruglyakov, S.I. Karakashev, A.V. Nguyen and N.G. Vilkova (2008) Foam drainage, Current Opinion in Colloid & Interface Science, 13(3), 163-170, https://doi.org/10.1016/j.cocis.2007.11.003.
- A. Trybala, N. Koursari, P. Johnson, O. Arjmandi-Tash and V. Starov (2019). Interaction of liquid foams with porous substrates, Current Opinion in Colloid & Interface Science, 39, 212-219, https://doi.org/10.1016/j.cocis.2019.01.011.
- L. Braun, M. Kuhnhammer and R.-V. Klitzing (2020). Stability of aqueous foam films and foams containing polymers: Discrepancies between different length scales, Current Opinion in Colloid & Interface Science, 50, 101379, https://doi.org/10.1016/j.cocis.2020.08.004.
- Z. Odibat and S. Momani (2008). Modified homotopy perturbation method: application to quadratic Riccati differential equation of fractional order, Chaos Solitons Fractals, 36(1), 167-174, https://doi.org/10.1016/j.chaos.2006.06.041.
- Y. Salehi and M.T. Darvishi (2016). An investigation of fractional Riccati differential equation, Optik, 127, 11505-11521, http://dx.doi.org/10.1016/j.ijleo.2016.08.008.
- S.T.R. Rizvi, K. Ali, S. Bashir, M. Younis, R. Ashraf and M.O. Ahmad (2017). Exact soliton of (2+1)-dimensional fractional Schrodinger equation, Superlattices and Microstructures, 107, 234-239, https://doi.org/10.1016/j.spmi.2017.04.029.
- A.H. Bhrawy, J.F. Alzaidy, M.A. Abdelkawy and A. Biswas (2016). Jacobi spectral collocation approximation for multi-dimensional time-fractional Schrodinger equations, Nonlinear Dyn., 84, 1553-1567, https://doi.org/10.1007/s11071-015-2588-x.
- S. Kumar, A. Kumar and D. Baleanu (2016). Two analytical methods for time-fractional nonlinear coupled Boussinesq-Burgers' equations arise in propagation of shallow water waves, Nonlinear Dyn., 85, 699-715, https://doi.org/10.1007/s11071-016-2716-2.
- S.A. El-Wakil and E.M. Abulwafa (2015). Formulation and solution of space-time fractional Boussinesq equation, Nonlinear Dyn., 80, 167-175, https://doi.org/10.1007/s11071-014-1858-3.
- Z. Dahmani, M.M. Mesmoudi and R. Bebbouchi (2008). The foam drainage equation with time- and spacefractional derivatives solved by the Adomian method, Electron. J. Qual. Theor. Diff. Equ., 30, 1-10, http://www.math.u-szeged.hu/ejqtde.
- Z. Dahmani and A. Anber (2010). The variational iteration method for solving the fractional foam drainage equation, Int. J. Nonlinear Sci., 10(1), 39-45, IJNS.2010.08.15/384.
- M. Singh, M. Naseem, A. Kumar and S. Kumar (2016). Homotopy analysis transform algorithm to solve time-fractional foam drainage equation, Nonlinear Eng., 5, 161-166, https://doi.org/10.1515/nleng-2016-0014.
- A. Bouhassoun, M.H. Cherif and M. Zellal (2013). Variational homotopy perturbation method for the approximate solution of the foam drainage equation with time and space fractional derivatives, Malaya Journal of Matematik, 4, 163-170
- O.S. Iyiola, M.E. Soh and C.D. Enyi (2013). Generalised homotopy analysis method (q-HAM) for solving foam drainage equation of time fractional type, Math. Eng. Sci. Aerospace, 4(4), 429-440.
- H. Hosseini Fadravi, H. Saberi-Nik and R. Buzhabadi (2011). Homotopy analysis method for solving foam drainage equation with space- and time-fractional derivatives, Int. J. Diff. Equ., 2011, 237045, https://doi.org/10.1155/2011/237045.
- K.A. Gepreel and S. Omran (2012). Exact solutions for nonlinear partial fractional differential equations, Chin. Phys. B, 21, 110204. https://doi.org/10.1088/1674-1056/21/11/110204
- A. Akgul, A. Kilicman and M. Inc (2013). Improved (G'/G)-expansion method for the space and time fractional foam drainage and KdV equations, Abstr. Appl. Anal., 2013, 414353, https://doi.org/10.1155/2013/414353.
- M. Alquran (2014). Analytical solutions of fractional foam drainage equation by residual power series method, Math. Sci., 8(4), 153-160. https://doi.org/10.1007/s40096-015-0141-1
- M. Mirzazadeh, M. Eslami and A. Biswas (2014). Solitons and periodic solutions to a couple of fractional nonlinear evolution equations, Pramana, 82, 465-476, 10.1007/s12043-013-0679-0.
- L. Wang, S.F. Tian, Z.T. Zhao and X.Q. Song (2016). Lie symmetry analysis and conservation laws of a generalized time fractional foam drainage equation, Commun. Theor. Phys., 66, 35-40, https://doi.org/10.1088/0253-6102/66/1/035.
- R. Khalil, M. Al-Horani, A. Yousef and M. Sababheh (2014). A new definition of fractional derivative, J. Comput. Appl. Math., 264, 65-70, https://doi.org/10.1016/j.cam.2014.01.002.
- A. Ali, A.R. Seadwy, D. Baleanu (2020). Computational solutions of conformable space-time derivatives dynamical wave equations: Analytical mathematical techniques, Results in Physics, 19 Article:103419.
- M.T. Darvishi, M. Najafi and A.M. Wazwaz (2021). Some optical soliton solutions of space-time conformable fractional Schrodinger-type models, Phys. Scr., 92(2) Article:065213, doi.org/10.1088/1402-4896/abf269.
- A. Zulfiqar, J. Ahmad (2021). New optical solutions of conformable fractional perturbed Gerdjikov-Ivanov equation in mathematical nonlinear optics, Results in Physics, 21 Article:103825.
- W. Kallel, H. Almusawa, S.M. Mirhosseini-Alizamani, M. Eslami, H. Rezazadeh, M.S. Osman (2021). Optical soliton solutions for the coupled conformable Fokas-Lenells equation with spatio-temporal dispersion, Results in Physics, 26 Article:104388.
- M.T. Darvishi, M. Najafi and A.M. Wazwaz (2021). Conformabl space-time fractional nonlinear (1+1)-dimensional Schrodinger-type models and their traveling wave solutions, Chaos Solitons Fractals, 150 Article:111187, doi.org/10.1016/j.chaos.2021.111187.
- G. Cai, Q. Wang and J. Huang (2014). A modified F-expansion method for solving breaking soliton equations, Int. J. Nonlinear Sci., 2, 122-128, IJNS.2006.10.15/042.
- Z.B. Li and J.H. He (2010). Fractional complex transform for fractional differential equations, Math. Comput. Appl., 15, 970-973, https://doi.org/10.3390/mca15050970.