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ABSTRACT. The modified F -expansion method is used to construct analytical solutions of the
foam drainage equation with time- and space-fractional derivatives. The conformable deriva-
tives are considered as spacial and temporal ones. As a result, some analytical exact solutions
including kink, bright-dark soliton, periodic and rational solutions are obtained.

1. INTRODUCTION

Nonlinear partial differential equations (NLPDEs) model many real life problems as well.
One of these problems is the drainage or creaming of liquid in a foam. An NLPDE for mod-
elling the foam drainage procedure presents density of the foam as a function of time and its
vertical position. One may encounter the presence of liquid foam in nature when liquid/gas
systems are processed in industry. We can see foaming processes in distillation and absorption
ones. Any interplay between gravity, viscous forces, and surface tension shows the drainage
of liquid foams. As a matter of fact, application of foams is very widespread, from producing
personal care creams and gels to car making processes (for more details see [1]). This means
that foams have everyday utilizations in our real life. For example foams use in material and
food processing, fire fighting, lotions and creams (as some personal care products), chemical
industries, and structural material sciences [1, 2, 3]. The flow of a liquid through a foam can
be described by foam drainage which is driven by gravity and capacity. During the last two
decades, there are many efforts to progress in understanding the relevant physics which can be
expressed by foam drainage in emulsion (cf. [4, 5, 6, 7] and references therein). Another aspect
for a special foam is its stability. The stability is an important criterion for special foams and
has an important relevance in the industry of detergents (cf. [8]). All of these show the range
of applications of foam drainage or creaming procedure.
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The following time- and space-fractional version of the foam drainage equation is considered
in the present work

∂α u

∂ tα
=

1

2
u
∂2β u

∂ x2β
+ 2u2

∂β u

∂ x2β
+

(
∂β u

∂ xβ

)2

, t > 0, and α, β ∈ (0, 1]. (1.1)

For integer boundary value 1 for α and β, the foam drainage Eq. (1.1) changes to the following
well-known foam drainage equation

ut =
1

2
uuxx + 2u2 ux + (ux)2 , (1.2)

where “u(x, t) is the cross section of a channel formed where three films meet which usually
indicated as Plateau border, x and t are scaled position and time coordinates, respectively [9]”.
Foams present hierarchical materials with complex and various structures without any limita-
tion on their length. To have an example for a soft matter with a well defined structure, we can
point out to a liquid foam. For the first time, J. Plateau clearly described such structures more
than one-hundred years ago. Foam drainage Eq. (1.2) is investigated by many researchers. A
semi analytical scheme, Adomian’s decomposition algorithm, is used by Helal and Mehanna
[10] to solve (1.2). Also, to obtain solutions of the foam drainage Eq. (1.2) they applied the
tanh method which is an analytical method to solve PDEs. Some new analytical solutions for
(1.2) were presented by Khani et al. [11] by using exp-function scheme. The homotopy anal-
ysis method is used by Darvishi and Khani [12] to obtain a series solution for (1.2). The Haar
wavelets approach is used by Arbabi et al. [13] to present a semi analytical solution for (1.2).
Kruglyakov et al. [14] presented a complete review focusing on works about foam drainage
up to year 2008, their review paper contains the theoretical and experimental works on foam
drainage models.
Foam materials are suitable for absorption and influencing into a spongy media. This in turn,
causes that the foam materials have very substantial interests in industry and scientific re-
searches. Hence they are ideal products in cosmetics and pharmaceutical products. Besides,
because of their improved wetting behaviour, they are very useful in drug delivery processes.
Recently, Trybala et al. [15] published an interesting review on researches on absorption of
drainage of foams that placed on spongy substrates. That paper explains theoretical models,
experimental observations and simulation studies of a foam drainage as well. Finally, Braun et
al. [16] gave an overview on researches related to proteins, polyelectrolyte compositions, and
imbibition microgels at single air or water media, in both foam films and a macroscopic foam.

Even though fractional differentiation (derivatives of arbitrary orders) has a 300-year his-
tory, recently because of applications of fractional differential equations (FDFs), these equa-
tions have received much attention. We may find applications of FDFs in different subjects in
engineering (electricity, electromagentics, telecommunications lines, etc), physics (wave prop-
agation, viscoelacity, etc), chemistry, biology, economics, etc. This is because of ability of
FDEs in modelling real world problems. The most important property of the fractional deriv-
ative is its nonlocal property. As a matter of fact, a suitable modelling of natural phenomena
in physics depends on both of the time instant and the prior time history. One can achieve this
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situation using fractional derivatives as well because of its nonlocal property. By extending of
an integer order differential equation, one may find an FDE. Fractional version of Riccati Eq.
[17, 18], non-integer order Schrödinger Eqs. [19, 20], fractional nonlinear coupled Boussinesq-
Burgers’ Eq. [21], fractional Boussinesq Eq. [22] etc show some of these extensions.
There are some efforts to solve time- and/or space-fractional version of the foam drainage
equations. Dahmani and Mesmoudi applied the Adomian method for obtaining solutions of a
fractional version of the foam drainage Eq. [23]. Also Dahmani and Anber applied the vari-
ational iteration method for obtaining solutions of the equation. Singh et al. [25] used the
technique of modified homotopy analysis transform method to solve time fractional version of
the foam drainage model. In [26] the variational homotopy perturbation scheme is used to solve
the fractional version of the equation with both time- and space-fractional derivatives. Iyiola et
al. [27] applied the generalised homotopy analysis method to find solutions of time-fractional
foam drainage equation. Hosseini Fadravi et al. [28] used the homotopy analysis method to
present analytical solutions of the foam drainage equation with both space- and time-fractional
differentiations. Gepreel and Omran [29] investigated analytical solutions for the time- and
space-fractional derivative foam drainage model. By improving the (G

′

G )-expansion method,
Akgul et al. [30] obtained some new traveling wave solutions of the time- and space-fractional
foam drainage model. Alquran [31] solved the time-fractional foam drainage model by using
the residual power series scheme. Mirzazadeh et al. [32] obtained some different types of solu-
tions for the time- and space-fractional version of the foam drainage model. Also, a generalized
form of time-fractional foam drainage model is studied by Wang et al. [33].

In the present work, the conformable derivative is considered as time- and space-derivative.
The αth order conformable derivative is defined as

Dα
x (f(x)) = lim

θ→0

f(x+ θ x1−α)− f(x)

θ
,

where α ∈ (0, 1], and f is defined for all positive x. This definition is presented by Khalil et
al. [34]. Some properties for conformable fractional derivative can be found in [34]. One may
find some recent applications of conformable fractional derivative in [35, 36, 37, 38, 39]. As
solidification state of a foam in its creaming or drainage process can be modeled by fractional
differentiation more exact than the integer order ones, hence we can conclude that the obtained
results in this paper will be useful in any area of foam drainage problem.

2. THE MODIFIED F -EXPANSION ALGORITHM

The F -expansion algorithm is a step-wise procedure to solve NLPDEs. Here, we give the
essential steps of the modified F -expansion method [40] to solve FDEs. They are extensions
of the method for integer order PDEs.
Step i. A time- and space-fractional PDE can be considered as the following general form
wherein the variable U depends on independent variables x, and t

Γ(U,Dα
t U,D

β
x U,D

2α
t U, · · · ) = 0, (2.1)
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where α, β ∈ (0, 1]. A fractional complex transform is presented by Li et al. [41] which
converts an FDE to an ODE. This transformation is

U(x, t) = U(µ), µ =
k

β
xβ +

w

α
tα, (2.2)

wherein k,w are non zero arbitrary constants. Substituting (2.2) into (2.1) yields the following
ODE

Γ(U,U
′
, U

′′
, U

′′′
, · · · ) = 0, (2.3)

where the prime shows differentiation with respect to µ.
Step ii. Now, we express U(µ) as

U(µ) = a0 +
M∑

i=−M
ai F

i(µ), (aM is nonzero), (2.4)

where a0, ai are unknown constants that will be obtained, and F (µ) satisfies in the following
Riccati equation

F
′
(µ) = η + λF (µ) + γ F 2(µ). (2.5)

For some special values of constants η, λ and γ function F will be obtained. Indeed, one must
solve Riccati Eq. (2.5) to obtain function F which it is a simple and straightforward procedure.
The solutions of Eq. (2.5) are well-known ones (see Table 1). One may determine the positive
integer M by using the homogeneous balance approach between the highest order derivatives
of U(µ) and the governing nonlinear term(s) in (2.3).
Step iii. In this step, we first substitute (2.4) into (2.3). After that, we use (2.5) to convert the
left hand side of Eq. (2.3) to a finite series in F i(µ), i = −M, · · · ,−1, 0, 1, · · · ,M . Next, by
collecting all terms with the same order of F i(µ) together, and finally setting each coefficient
of the obtained polynomial equal to zero, a set of algebraic equations for ai, η, λ, γ, k and w is
obtained.
Step iv. The solutions of (2.5) are well known, also by substituting ai, η, λ, γ, k and w into
(2.4), the general form of exact solutions for (2.3) are obtained. Hence, as the general form of
exact solutions of Eq. (2.5) are listed in Table 1, one may obtain a series of different types of
solutions for (2.1).

3. FINDING SOLUTIONS

The modified F -expansion scheme is used for constructing the analytical solutions for the
following time- and space-fractional foam drainage model

∂α u

∂ tα
=

1

2
u
∂2β u

∂ x2β
+ 2u2

∂β u

∂ x2β
+

(
∂β u

∂ xβ

)2

, t > 0, 0 < α ≤ 1, 0 < β ≤ 1. (3.1)

In order to achieve this goal, we use the following transformation

u(x, t) = u(µ), µ =
k

β
xβ +

w

α
tα. (3.2)
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TABLE 1. Values of η, λ, γ and their relations with the corresponding function F in (2.5).

Values of η, λ, γ F (µ)

η = 0, λ = 1, γ = −1 1
2 + 1

2 tanh(µ2 )

η = 0, λ = −1, γ = 1 1
2 −

1
2 coth(µ2 )

η = 1
2 , λ = 0, γ = −1

2 coth(µ)± csch(µ), tanh(µ)± isech(µ)

η = 1, λ = 0, γ = −1 tanh(µ), coth(µ)

η = 1
2 , λ = 0, γ = 1

2 sec(µ) + tan(µ), csc(µ)− cot(µ)

η = −1
2 , λ = 0, γ = −1

2 sec(µ)− tan(µ), csc(µ) + cot(µ)

η = 1(−1), λ = 0, γ = 1(−1) tan(µ), cot(µ)

η = 0, λ = 0, γ 6= 0 − 1
γ µ+m (m, any arbitrary constant)

η, any arbitrary constant, λ = γ = 0 η µ

η, any arbitrary constant, λ 6= 0, γ = 0 exp(λ)−η
λ

Parameters k and w in (3.2) are constant values. Using (3.2) changes Eq. (3.1) to

− wu′
+
k2 uu

′′

2
+ 2 k u2 u

′
+ k2 (u

′
)2 = 0. (3.3)

In (3.3) the prime represents differentiation with respect to variable µ.
The highest order derivative is balanced with the highest order nonlinear term in (3.3) which
gives M = 1. Thus we obtain

u(µ) = a0 + a−1 F
−1(µ) + a1 F (µ), (3.4)

where a−1, a0, a1 are some constants which will be known later. Now, first we set u from
(3.4) into (3.3). Next, we collect all terms of powers of F i(µ) and set each coefficient equal to
zero. All of these works result in a system of algebraic equations. Unknowns of this system
are a−1, a0, a1, k and w. We can use a symbolic package like Maple to solve this system which
obtains the following cases for solutions of the system.
Case 1: For η = 0:

a−1 = 0, a0 =
−kλ

2
, a1 = −kγ,w =

1

4
k3λ2, and k = k.
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Case 2: For λ = 0:

a−1 = kη, a0 = 0, a1 = −kγ,w = −4 k3ηγ, and k = k
and

a−1 = 0, a0 = 0, a1 = −kγ,w = −k3ηγ, and k = k.

Case 3: For η = λ = 0:

a−1 = 0, a0 = 0, a1 = −kc, w = w, and k = k.

Substituting these cases in (3.4), and using information of Table 1, some new analytical solu-
tions are obtained for time- and space-fractional model (3.1).

3.1. Some new soliton like solutions. (1) For η = 0, λ = 1, γ = −1, from the first case and
data in Table 1, we obtain

u1(x, t) = −1

2
k + k tanh

[
k xβ

β
+
k3 tα

4α

]
. (3.5)

(2) For η = 0, λ = −1, γ = 1, from information of Table 1 and using the first case, the
following solution is obtained

u2(x, t) =
1

2
k − k coth

[
k xβ

β
+
k3 tα

4α

]
. (3.6)

(3) For η = 1
2 , λ = 0, γ = −1

2 , using Case 2 and information of Table 1, the following
solutions are obtained

u3(x, t) = k
cosh2

[
k xβ

β + k3 tα

α

]
− 1 + i sinh

[
k xβ

β + k3 tα

α

]
cosh

[
k xβ

β + k3 tα

α

] (
sinh

[
k xβ

β + k3 tα

α

]
+ i
) ,

u4(x, t) = −k
− cosh2

[
k xβ

β + k3 tα

α

]
+ 1 + i sinh

[
k xβ

β + k3 tα

α

]
cosh

[
k xβ

β + k3 tα

α

] (
sinh

[
k xβ

β + k3 tα

α

]
− i
) ,

u5(x, t) =
k

2
coth

[
k xβ

β + k3 tα

4α

]
± k

2
csch

[
k xβ

β + k3 tα

4α

]
,

u6(x, t) =
k

2
tanh

[
k xβ

β + k3 tα

4α

]
± k i

2
sech

[
k xβ

β + k3 tα

4α

]
.

(4) For η = 1, λ = 0, γ = −1, and using information of Case 2, values of η, λ and γ in Table
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1, yield

u7(x, t) = k tanh
[
k xβ

β + 4k3 tα

α

]
+ k coth

[
k xβ

β + 4k3 tα

α

]
,

u8(x, t) = k tanh
[
k xβ

β + 4k3 tα

α

]
,

u9(x, t) = k coth
[
k xβ

β + 4k3 tα

α

]
.

3.2. Some new trigonometric function solutions. (i) Setting η = γ = 1
2 , λ = 0, using Table

1 and values of parameters in the third case, we obtain the followings

u10(x, t) = −k tan
[
k xβ

β −
k3 tα

α

]
,

u11(x, t) = k cot
[
k xβ

β −
k3 tα

α

]
,

u12(x, t) = −k
2

(
sec
[
k xβ

β −
k3 tα

4α

]
+ tan

[
k xβ

β −
k3 tα

4α

])
,

u13(x, t) = −k
2

(
csc
[
k xβ

β −
k3 tα

4α

]
− cot

[
k xβ

β −
k3 tα

4α

])
.

(ii) With η = γ = −1
2 , λ = 0, from Table 1 and values of parameters in the second case, we

obtain

u14(x, t) =
k

2

(
sec
[
k xβ

β −
k3 tα

4α

]
− tan

[
k xβ

β −
k3 tα

4α

])
,

u15(x, t) =
k

2

(
csc
[
k xβ

β −
k3 tα

4α

]
+ cot

[
k xβ

β −
k3 tα

4α

])
.

(iii) For η = γ = 1, λ = 0, from values of our parameters in Case 2 and data in Table 1, the
following solutions are obtained

u16(x, t) = k
(

cot
[
k xβ

β −
4k3 tα

α

]
− tan

[
k xβ

β −
4k3 tα

α

])
,

u17(x, t) = k
(

tan
[
k xβ

β −
4k3 tα

α

]
− cot

[
k xβ

β −
4k3 tα

α

])
.

3.3. Some new rational solutions. For η = λ = 0, γ 6= 0, and using information of Table 1
and values of our parameters in the third case, we present the following rational solutions for
(3.1)

u18(x, t) =
k γ

γ
[
k xβ

β + w tα

α

]
+m

,

where m is an arbitrary constant.
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4. A PHYSICAL VIEW ON THE PRESENTED RESULTS

It is well-known that two different types of envelope solitons, dark and bright, that can prop-
agate in nonlinear dispersive media. A dark soliton is a solitary wave that is generated by
cutting a portion of a continuous wave. Nonlinear chirping of the intensity dip in the continu-
ous wave balances the group velocity dispersion of optical fiber in the normal region. Indeed
a dark soliton is an amplitude dip in the continuous wave. It is well known that dark soliton is
a localized surface, which is an amplitude dip, that causes a temporary decrease in wave am-
plitude, and usually can exist in normal dispersion region. Moreover, dark solitons are widely
studied because of their unique features in inhomogeneous optical fibers. In other words, the
intensity profile of the dark soliton exhibits a dip, or hole-soliton, in a uniform background.
Dark solitons have shown to be stable and robust to losses. A bright soliton is defined as a lo-
calized surface soliton that makes a temporary increase in its wave amplitude, or simply bright
soliton is a pulse on a zero-intensity background. This can be easily seen from the solutions
of the KdV equation, where the bright soliton solution is represented by u(x, t) = sech2(x, t).
However, the dark soliton is featured as a localized intensity dip below a continuous wave
background. The dark solitons appear in the solutions of the Burgers equation, where the dark
soliton solution is represented by u(x, t) = tanh(x, t). A combination of bright and dark soli-
tons makes bright-dark solitons. Traveling kink solitons represent propagating clockwise twist,
to complete this kind of solutions, it must be noted that traveling anti-kink solitons represent
propagating counterclockwise twist. Finally, a rational solution can be recovered by taking a
long wave limit of the soliton solutions.

In this section, we have a physical view on the constructed solutions of the conformable
sense of space- and time-fractional foam drainage Eq. (3.1). Our solutions can be categorized
to four different types, namely, kink solutions, soliton or more precisely, bright-dark soliton
solutions, periodic solutions and rational ones. In fact, solutions u1, u3, u4, and u8(x, t) are
kink solutions for (3.1). As they had similar forms, only graph of one of them is plotted. Three-
dimensional plot of u1 in (3.5) is figured out in part (a) of Fig. 1, part (b) of this figure shows
the solution (3.5) in two dimensional case for t = 0, 1, and 2. Also solutions u2, u5, u6, u7, u9
and u15(x, t) are bright-dark soliton solutions of (3.1). Since plots of these solitonic solutions
are different from each other, we have potted all of them. Parts (a) of Figs. 2, 3, 4, 5, 6, and
12 show 3D plots of these soliton solutions for some special values of their parameters. Parts
(b) of these figures show 2D plots of these solutions for t = 0, 1, and 2. We can easily see the
soliton property for all of these solutions from two-dimensional plots. Seven solutions, namely,
u10, u11, u12, u13, u14, u16 and u17(x, t) are periodic solutions. Parts (a) of Figs. 7, 8, 9, 10,
11, 13, and 14 show these periodic solutions for some special values of their parameters in
three-dimensional case while their 2D plots are depicted in parts (b) of these figures. Finally,
u18(x, t) is a rational solution of (3.1). Three- and two-dimensional cases of this solutions are
depicted in Fig. 15(a), and 15(b). In addition, to investigate the consequence of the non-integer
order of space- and time-differentiation of the constructed solutions, two dimensional plots of
solutions are depicted. Parts (c) of all figures show that the nature of the solution is changed by
changing of the fractional order. Indeed, when α → 1, and β → 1, the solutions close to the
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solution of the integer order of the foam drainage Eq. (1.2). This confirms that, our constructed
solutions continuously depend on the non-integer order of derivatives. By these figures and
solutions, we will have new physical explanations for the time- and space-fractional version of
the foam drainage model. It must be noted that, the foam is a porous medium therfore

5. CONCLUSIONS

Four different types analytical solutions have derived for the time- and space-fractional foam
drainage model. This is done by applying the modified F -expansion approach. The modified
F -expansion scheme is a useful mathematical algorithm to obtain more new exact hyperbolic,
rational and trigonometric function solutions for many nonlinear FDEs in physical and math-
ematical sciences. The modified F -expansion algorithm is a powerful direct and step-wise
solution procedure which it is modified to solve fractional PDEs. One can apply this method
to solve another nonlinear FDEs that have trigonometric function solutions. We claim that,
the presented analytical solutions in this paper were not presented previously in the other pub-
lished works and all of them are new ones. All presented solutions in this paper are checked to
satisfy in their related equations. Finally, the reported analytical solutions showed the powerful
application of the modified F -expansion method in solving time- and space-fractional foam
drainage equation.
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FIGURE 1. (a) Three-dimensional plot of kink solution (3.5) with k = 2, α = 1 and β = 1. (b)
Two-dimensional graphs of the kink solution (3.5) for t = 0, 1, and 2. (c) Plots of u1 in (3.5) for β = 1
and different values α.

(a) (b) (c)

FIGURE 2. (a) Soliton solution (3.6) with k = 1, α = 1 and β = 1 in three-dimensional case. (b)
Plots of the soliton solution (3.6) for t = 0, 1, 2 in two-dimensional form. (c) Figures of solution (3.6) for
β = 1 and some values of α.

(a) (b) (c)
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FIGURE 3. (a) Soliton solution u5 with k = 0.5, α = 1 and β = 1. (b) Plots of the soliton solution
u5 for t = 0, 1, 2. (c) Plots of u5 for special values of α and β.

(a) (b) (c)

FIGURE 4. (a) Soliton solution u6 with k = 0.8 i, α = 1 and β = 1. (b) Soliton solution u6 for
t = 0, 1, 2. (c) Plots of u6 for some values of α and β = 1.

(a) (b) (c)

FIGURE 5. (a) Soliton solution of u7 with k = 0.5, and α = β = 1. (b) Soliton solution u7 for
t = 0, 1, 2. (c) Graphs of u7 for some special values of α and β = 1.

(a) (b) (c)
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FIGURE 6. (a) Soliton solution u9 with k = α = β = 1. (b) Figures of the soliton solution u9 for
t = 0, 1, 2. (c) Plots of u9 for varying α and special case β = 1.

(a) (b) (c)

FIGURE 7. (a) Periodic solution u10 with k = 0.6, α = β = 1. (b) Plots of the periodic solution
u10 for t = 0, 1, 2. (c) Graphs of u10 for β = 1 and special values α.

(a) (b) (c)

FIGURE 8. (a) Periodic solution u11 with k = α = β = 1. (b) Plots of the periodic solution u11 for
t = 0, 1, 2. (c) Plots of u11 for β = 1 and varying α.

(a) (b) (c)



146 M.T. DARVISHI, M. NAJAFI, AND B.C. SHIN

FIGURE 9. (a) Periodic solution u12 with α = β = k = 1. (b) Figures of the periodic solution u12
for t = 0, 1, 2. (c) Graphs of u12 for β = 1 and different values of α.

(a) (b) (c)

FIGURE 10. (a) Periodic solution u13 with β = k = α = 1. (b) Plots of the periodic solution u13
for t = 0, 1, 2. (c) Figures of u13 for β = 1 and α = 0.8, 0, 9, 0.95, 1.

(a) (b) (c)

FIGURE 11. (a) Periodic solution u14 with k = β = α = 1. (b) Plots of the periodic solution u14
for t = 0, 1, 2. (c) Plots of u14 for β = 1 and α = 0.8, 0, 9, 0.95, 1.

(a) (b) (c)
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FIGURE 12. (a) Soliton solution u15 with k = 0.5, α = β = 1. (b) Plots of the soliton solution u15
for t = 0, 1, 2. (c) Plots of u15 for β = 1 and some special values of α.

(a) (b) (c)

FIGURE 13. (a) Periodic solution u16 with k = 0.5, α = β = 1. (b) Plots of the periodic solution
u16 for t = 0, 1, 2. (c) Plots of u16 for β = 1 and α = 0.8, 0, 9, 0.95, 1.

(a) (b) (c)

FIGURE 14. (a) Periodic solution u17 with k = 0.5, α = β = 1. (b) Graphs of the periodic solution
u17 for t = 0, 1, 2. (c) Plots of u17 for β = 1 and α = 0.8, 0, 9, 0.95, 1.

(a) (b) (c)
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FIGURE 15. (a) Rational solution u18 with k = w = c = m = 1, α = β = 1. (b) Plots of the
periodic solution u18 for t = 0, 1, 2. (c) Graphs of u18 for β = 1 and α = 0.8, 0, 9, 0.95, 1.

(a) (b) (c)




