Acknowledgement
The authors appreciate the reviewers for their constructive comments, which have improved the quality of this paper. The corresponding author (J.S. Kim) was supported by the Brain Korea 21 FOUR from the Ministry of Education of Korea.
References
- M. C. Fu and J. Q. Hu, Sensitivity analysis for Monte Carlo simulation of option pricing, Prob. Eng. Inf. Sci., 9(3) (1995), 417-446. https://doi.org/10.1017/S0269964800003958
- D. Duffie and P. Glynn, Efficient Monte Carlo simulation of security prices, Ann. Appl. Probab., 5(4) (1995), 897-905. https://doi.org/10.1214/aoap/1177004598
- N. K. Chidambaran, Genetic programming with Monte Carlo simulation for option pricing, Proc. Winter Simul. Conf., 1 (2003), 285-292.
- L. Ballotta and I. Kyriakou, Monte Carlo simulation of the CGMY process and option pricing, J. Fut. Mark., 34(12) (2014), 1095-1121. https://doi.org/10.1002/fut.21647
- L. A. AbbasTurki, S. Vialle, B. Lapeyre, and P. Mercier, Pricing derivatives on graphics processing units using Monte Carlo simulation, Concurr. Comput. Pract. Exper., 26(9) (2014), 1679-1697. https://doi.org/10.1002/cpe.2862
- S. Galanti and A. Jung, Low-discrepancy sequences: Monte Carlo simulation of option prices, J. deriv., 5(1) (1997), 63-83. https://doi.org/10.3905/jod.1997.407985
- D. Grant, G. Vora, and D. Weeks, Path-dependent options: Extending the Monte Carlo simulation approach, Manag. Sci., 43(11) (1997), 1589-1602. https://doi.org/10.1287/mnsc.43.11.1589
- S. Rakhmayil, I. Shiller, and R. K. Thulasiram, Different Estimators Of The Underlying Asse4 s Volatility And Option Pricing Errors: Parallel Monte-Carlo Simulation, WIT Trans. Modelling Simul., 38 (2004), 121-131.
- G. M. Jabbour and Y. K. Liu, Option pricing and Monte Carlo simulations, J. Bus. Eco. Res., 3(9) (2005), 1-6.
- R. Martinkut-Kaulien, J. Stankeviien, and S. inyt, Option pricing using Monte Carlo simulation, J. Sec. Sust. Iss., 2(4) (2013), 65-79. https://doi.org/10.9770/jssi.2013.2.4(7)
- Q. Zhu, G. Loeper, W. Chen, and N. Langren, Markovian approximation of the rough Bergomi model for Monte Carlo option pricing, Math., 9(5) (2021), 528:1-21.
- H. Jang, S. Kim, J. Han, S. Lee, J. Ban, H. Han, C. Lee, D. Jeong, and J. Kim, Fast Monte Carlo simulation for pricing Equity-Linked Securities, Comput. Econ., 56 (2020), 865-882. https://doi.org/10.1007/s10614-019-09947-2
- P. Glasserman, Monte Carlo methods in financial engineering, Springer Science & Business Media, 53 (2013).
- R. Pemantle and M. D. Penrose, On path integrals for the high-dimensional Brownian bridge, J. Comput. Appl. Math., 3 (1992), 381-390.
- S. E. Shreve, Stochastic Calculus for Finance II: Continuous-Time Models. Springer Science & Business Media, 11 (2004).