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ABSTRACT. In this study, we present a fast option pricing method for four asset equity-linked
securities (ELS) using Brownian bridge. The proposed method is based on Monte Carlo simu-
lation (MCS) and a Brownian bridge approach. Currently, three asset ELS is the most popular
ELS among multi-asset ELSs. However, four asset ELS emerged as an alternative to three asset
ELS under low interest rate environment to give higher coupon rate to investors. We describe in
detail the computational solution algorithm for the four underlying asset step-down ELS. The
numerical tests confirm the accuracy and speed of the method.

1. INTRODUCTION

In this article, we present a fast option pricing method for four asset equity-linked securities
(ELS) using Brownian bridge technique. The proposed method is based on Monte Carlo sim-
ulation (MCS) and a Brownian bridge approach. MCS is one of the most important techniques
in quantitative finance and this method can be utilized as a simple and powerful alternative
tool for option pricing. Fu and Hu [1] introduced techniques for the sensitivity analysis of op-
tion pricing, which provided an estimate of the option value and estimates of the sensitivities
of the option value to various parameters. Duffie and Glynn [2] provided an asymptotically
efficient algorithm for the allocation of computing resources to the problem of continuous-
time security prices. Chidambaran [3] used MCS to generate stock and option price data
needed to develop a genetic option pricing program. Ballotta and Kyriakou [4] presented a
joint Monte Carlo-Fourier transform sampling scheme for pricing derivative products under a
Carr–Geman–Madan–Yor model exhibiting jumps of infinite activity and finite or infinite vari-
ation. Abbas–Turki et al. [5] researched the pricing for European and American options on
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graphics processing units using MCS. They reduced the computational energy consumed and
showed faster performance compared to CPU operation. In addition, there are various option
pricing studies using MCS [6, 7, 8, 9, 10, 11].

Since the advent of ELS in 2002, the types of ELS have evolved in various ways. For exam-
ple, knock-out type (either single-directional and bi-directional), bull-spread type, digital type,
reverse-convertible type and step-down type with knock-in and no knock-in have emerged as
investment circumstance changes over time. Because step-down ELS is the most frequently
issued type whether knock-in barrier is embedded or not, we are focusing on step-down type.
One of the key features of step-down type of ELS is that it is path dependent option like struc-
tured derivatives. Early redemption condition is Bermudan like option and knock-in barrier
condition is American like option in terms of frequency of checking days. Early redemption
condition requires to check only number of days already designated at issuing date, whereas
knock-in barrier condition requires to check daily basis. We used Brownian bridge algorithm
to reduce computational cost by reducing cases that is needed to be checked daily basis.

Currently, three underlying asset ELS is the most popular ELS among multi-asset ELSs.
However, four underlying asset ELS emerged as an alternative to three asset ELS under low
interest rate environment to give higher coupon rate to investors. Intuitively, not only more
complex structure of ELS gives higher return to investors but also it gives more risk to capital
market as well as investors. In March 2020, foreign currency market experienced huge shock
that never had for a decade. Security firms issued multi-underlying asset ELS faced huge
amount of margin call as foreign stock market fell steeply because of COVID-19. The effect
of margin calls from ELS immediately had a severe impact on the foreign exchange market
as large security firms needed to exchange currency to make-up margin calls. The severity of
shock of foreign currency market can be checked by looking swap cost fluctuation from the
mid of March to early of April. Changes in condition of capital market and foreign exchange
market can adversely affect the general industry and must be managed.

Because ELS has become an important investment tool in capital market of republic of
Korea, its hedging strategy and risk management are becoming more important than ever. We
believe that one of the key factors in risk management is how accurately profit and loss of ELS
can be quantified. Therefore, we propose a numerical solution algorithm that makes it feasible.
We describe the computational solution algorithm for the four underlying asset step-down ELS.
The numerical tests confirm the accuracy and speed of the method.

The contents of this paper are as follows. In Section 2, four underlying asset ELS is de-
scribed. In Section 3, the computational solution algorithm is given. In Section 4, we present
computational experiments with the proposed method and conclusion is given in Section 5.

2. FOUR ASSET ELS

Figure 1 shows the schematic illustration of the four asset ELS option payoff. Let K1 ≥
K2 ≥ K3 ≥ K4 ≥ K5 ≥ K6 be strike prices and c1 < c2 < c3 < c4 < c5 < c6 be coupon
rates at times T1 < T2 < T3 < T4 < T5 < T6. Let us introduce the following notation for
k = 1, 2, 3, 4: Xk(t) = 100Sk(t)/Sk(0), where Sk(t) is the k-th underlying asset value at time
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t. Let us define the worst performer (WP (t)) among four asset paths:

WP (t) = min(X1(t), X2(t), X3(t), X4(t)).

At t = T1, if WP (T1) ≥ K1, then (1 + c1)F is paid, where F is the face value. Otherwise,
the contract will be continued. At time t = T2, if WP (T2) ≥ K2, then (1 + c2)F is paid. At
time t = T3, if WP (T3) ≥ K3, then (1 + c3)F is paid. At time t = T4, if WP (T4) ≥ K4,
then (1 + c4)F is paid. At time t = T5, if WP (T5) ≥ K5, then (1 + c5)F is paid. At t = T6,
we first check whether WP (T6) ≥ K6 or not. If it is true, then (1 + c6)F is paid. Otherwise,
if min0≤t≤T6 WP (t) ≤ D, then WP (T6)F/100 is paid. Otherwise, it is (1 + d)F , where d is
a dummy rate. Figure 1 shows the payoff structure.

Underlying asset

Profit

(a)

Profit

Underlying asset

(b)

FIGURE 1. Schematic illustration of the payoff structures of the four-asset
step-down ELS at times (a) t = T1, T2, T3, T4, T5 and (b) t = T6. Here,
d = c6 is used.

3. NUMERICAL METHOD

Now, let us describe the numerical solution algorithm in detail. Let us consider the following
coefficient matrix

A =


1 ρ12 ρ13 ρ14

ρ12 1 ρ23 ρ24

ρ13 ρ23 1 ρ34

ρ14 ρ24 ρ34 1

 .

Here, ρij is the correlation coefficient between i and j underlying assets. We can decompose
the matrix A using the Cholesky factorization [13] as follows:

A = LLT ,
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where

L =


L1,1 0 0 0

L2,1 L2,2 0 0

L3,1 L3,2 L3,3 0

L4,1 L4,2 L4,3 L4,4

 .

Here,

Lj,j =

√√√√Aj,j −
j−1∑
k=1

L2
j,k, Li,j =

1

Lj,j

(
Ai,j −

j−1∑
k=1

Li,kLj,k

)
for i > j.

We generate correlated random numbers Z∗1 , Z∗2 , Z∗3 , and Z∗4 from a standard multivariate
normal distribution Z1, Z2, Z3, and Z4 using


Z∗1

Z∗2

Z∗3

Z∗4

 = L


Z1

Z2

Z3

Z4

 =


L1,1 0 0 0

L2,1 L2,2 0 0

L3,1 L3,2 L3,3 0

L4,1 L4,2 L4,3 L4,4




Z1

Z2

Z3

Z4

 .

That is

Z∗1 =L1,1Z1, Z
∗
2 = L2,1Z1 + L2,2Z2,

Z∗3 =L3,1Z1 + L3,2Z2 + L3,3Z3,

Z∗4 =L4,1Z1 + L4,2Z2 + L4,3Z3 + L4,4Z4.

We make the following four correlated asset paths:

X1(ti+1) =X1(ti)e
(r−0.5σ2

1)∆ti+σ1
√

∆tiZ
∗
1i ,

X2(ti+1) =X2(ti)e
(r−0.5σ2

2)∆ti+σ2
√

∆tiZ
∗
2i ,

X3(ti+1) =X3(ti)e
(r−0.5σ2

3)∆ti+σ3
√

∆tiZ
∗
3i ,

X4(ti+1) =X4(ti)e
(r−0.5σ2

4)∆ti+σ4
√

∆tiZ
∗
4i ,

where ∆ti = ti+1 − ti. Let WP (ti) be the worst performer among four asset paths:

WP (ti) = min(X1(ti), X2(ti), X3(ti), X4(ti)).

We generate random samples at T1, T2, T3, T4, T5, T6. That is,

WP (Ti), i = 0, . . . , 6,

where WP (T0) = 100 and T0 = 0. If an early redemption condition is satisfied, then the
contract is ended with an appropriate payoff as shown in Fig. 2(a). Even if the knock-in barrier
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has been touched, if an early redemption or the maturity condition is satisfied as shown in Fig.
2(b), then the given payoff is paid.

(a) (b)

FIGURE 2. (a) Early redemption condition is satisfied and (b) maturity condi-
tion is satisfied even if the knock-in barrier has been touched.

If the early redemption and maturity conditions are not satisfied and the knock-in barrier has
been touched, i.e., min{WP (T1), WP (T2), WP (T3), WP (T4), WP (T5), WP (T6)} ≤ D
as shown in Fig. 3, then the payoff is WP (T6)F/100.

FIGURE 3. Early redemption and maturity conditions are not satisfied and the
knock-in barrier has been touched.

Otherwise, if min{WP (T1), WP (T2), WP (T3), WP (T4), WP (T5), WP (T6)} > D as
shown in Fig. 4, then we make a full path connecting the prices at the check days using the
Brownian bridge technique. In Fig. 4, the dashed line is the regenerated full path. Using
the regenerated full path, if min1≤i≤T6/∆tWP (ti) > D, see Fig. 4 (a), then the return is
(1 + d)F , where d is a dummy rate. If min1≤i≤T6/∆tWP (ti) ≤ D, refer to Fig. 4(b), then it
is WP (T6)F/100.
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(a) (b)

FIGURE 4. Reconstruction of a full path connecting the prices at the check
days: (a) no knock-in case and (b) knock-in case.

When we want additional values between the two given values, we can use the Brownian
bridge technique [14, 15] to make a path passing the two given values. For k = 1, 2, 3, 4, let
Xk(Ti) and Xk(Ti+1) be the two given values at t = Ti and t = Ti+1, respectively, then we
generate a path starting from Yk(Ti) = Xk(Ti) with the time step ∆t = 1/365.

Yk(tj+1) = Yk(tj)e
wj , j = 0, . . . , (Ti+1 − Ti)/∆t− 1,

where wj = (r − 0.5σ2)∆t + σ
√

∆tZ∗kj and tj = Ti + j∆t. Let Wj =
∑j

i=0wi, then
Yk(tj+1) = Yk(Ti)e

Wj , j = 0, . . . , (Ti+1 − Ti)/∆t − 1. In general, Yk(Ti+1) 6= Xk(Ti+1).
To make a path passing Xk(Ti) and Xk(Ti+1), we use the Brownian bridge technique to Wj .
Let

Bj = Wj +
tj − Ti
Ti+1 − Ti

log
Xk(Ti+1)

Yk(Ti+1)
, j = 0, . . . , (Ti+1 − Ti)/∆t− 1.

Then, we get a full path passing Xk(Ti) and Xk(Ti+1) as

Xk(tj+1) = Xk(Ti)e
Bj , j = 0, . . . , (Ti+1 − Ti)/∆t− 1.

Finally, we define the worst performer among four full asset paths:

WP (ti) = min(X1(ti), X2(ti), X3(ti), X4(ti)).

Using this worst performer, we apply the standard MCS. More details about generating new
path using the Brownian bridge technique can be found in [12]. We compute the prices of ELS
products with four assets using Algorithms 1 and 2.

4. NUMERICAL EXPERIMENT

Now, we perform characteristic computational tests. All computations are run in MATLAB
version R2020a on a Intel(R) Core(TM) i5-7400 CPU @ 3.00GHz 3.00 GHz PC with 12.0 GB
RAM.
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Algorithm 1 Initial setting for the Brownian bridge MCS algorithm for four asset ELS
Require:
K1 ≥ K2 ≥ K3 ≥ K4 ≥ K5 ≥ K6: Strike percentages
c1 < c2 < c3 < c4 < c5 < c6: Coupon rates
T1 < T2 < T3 < T4 < T5 < T6: Automatic redemption times
Ns: The number of sample paths
F : Face value
σ1, σ2, σ3, and σ4: Volatilities
ρ12, ρ13, ρ14, ρ23, ρ24, ρ34: Correlation coefficients
Z∗

1 , Z∗
2 , Z∗

3 , Z∗
4 : Correlated random numbers

r: Risk-neutral interest rate
d: Dummy rate
D: knock-in barrier
S1(t), S2(t), S3(t), S4(t): Underlying asset prices
X1(t) = 100S1(t)/S1(0), X2(t) = 100S2(t)/S2(0), X3(t) = 100S3(t)/S3(0),
X4(t) = 100S4(t)/S4(0): Scaled underlying asset prices
WP (t) = min(X1(t), X2(t), X3(t), X4(t)): Worst performer
M1 = M2 = M3 = M4 = M5 = M6 = 0

4.1. Parameter setting. We have conducted convergence test and comparison of CPU time
with strike prices K1 = 85, K2 = 80, K3 = 75, K4 = 70, K5 = 65, K6 = 60, Ti = 0.5i,
i = 1, . . . , 6, knock-in barrier D = 50, volatilities σ1 = 0.2, σ2 = 0.3, σ3 = 0.25, σ4 = 0.24,
the correlation coefficients ρ12 = 0.7, ρ13 = 0.48, ρ14 = 0.27, ρ23 = 0.45, ρ24 = 0.3,
ρ34 = 0.5, coupon rates c1 = 0.05, c2 = 0.1, c3 = 0.15, c4 = 0.2, c5 = 0.25, c6 = 0.3, the
risk-free interest free r = 0.01, and the dummy rate d = c6. Figure 5 shows the schematic
illustration of the four underlying asset ELS option payoff at times (a) t = T1, T2, T3, T4, T5

and (b) t = T6.

4.2. Convergence test. Figure 6 shows the convergence of the option values of the 4-asset
ELS with the increasing number of samples. Open circles and plus marks are the results of
the ELS prices from the Brownian bridge and standard MCS, respectively. For each sample
number, 100 simulation results are shown. The computational results indicate both the two
methods converge to the same value.

Table 1 shows the mean and variance of the 4-asset ELS price from the two difference
methods with 105 samples. Here, the mean and variance are computed with 100 simulations.
The numerical results indicates the equivalency of Brownian bridge and standard MCS.

TABLE 1. Mean and variance of the 4-asset ELS prices with two different approaches.

Case Mean Variance
Standard MCS 98.3956 0.0066

Brownian bridge MCS 98.4000 0.0064
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Algorithm 2 Brownian bridge MCS algorithm for four asset ELS
for iteration = 1 to Ns do

. Generate scaled stock paths on only Ti
for i = 0 to 5 do

for k = 1 to 4 do
Xk(Ti+1) = Xk(Ti) exp((r − 0.5σk)(Ti+1 − Ti) + σk

√
Ti+1 − TiZ∗

ki),
Z∗
ki ∼ N(0, 1)

end for
WP (Ti+1) = min(X1(Ti+1), X2(Ti+1), X3(Ti+1), X4(Ti+1))

end for
. Check the value of the stock path at checking days
if WP (T1) ≥ K1 then M1 = M1 + (1 + c1)F
else if WP (T2) ≥ K2 then M2 = M2 + (1 + c2)F
else if WP (T3) ≥ K3 then M3 = M3 + (1 + c3)F
else if WP (T4) ≥ K4 then M4 = M4 + (1 + c4)F
else if WP (T5) ≥ K5 then M5 = M5 + (1 + c5)F
else if WP (T6) ≥ K6 then M6 = M6 + (1 + c6)F
else if min1≤i≤6 {WP (Ti)} ≤ D then M6 = M6 + (WP (T6)/100)F
else

. Generate daily stock paths passing through Xk(Ti) using the Brownian bridge technique as
for i = 0 to 5 do

Set Y1(Ti) = X1(Ti), Y2(Ti) = X2(Ti), Y3(Ti) = X3(Ti), and Y4(Ti) = X4(Ti)
for k = 1 to 4 do

for j = Ti/∆t to Ti+1/∆t− 1 do
Yk(tj+1) = Yk(tj) exp(wj

k),
wj

k = (r − 0.5σ2
k)∆t+ σk

√
∆tZ∗

kj , Z∗
kj ∼ N(0, 1)

end for
end for

end for
. Apply the Brownian bridge technique
for k = 1 to 4 do

for j = Ti/∆t to Ti+1/∆t− 1 do
Yk(tj+1) = Yk(Ti) exp(W j

k ), W j
k =

∑j
p=Ti/∆t w

p
k

end for
end for
for j = Ti/∆t to Ti+1/∆t− 1 do

for k = 1 to 4 do
Xk(tj) = Xk(Tj) exp(Bj

k), Bj
k = W j

k +
tj−Ti

Ti+1−Ti
log Xk(Ti+1)

Yk(Ti+1)

end for
WP (tj) = min(X1(tj), X2(tj), X3(tj), X4(tj))

end for
if min1≤j≤T6/∆t {WP (tj)} ≤ D then M6 = M6 + (WP (T6)/100)F
else M6 = M6 + (1 + d)F
end if

end if
end for
. Take average and discount to present value.
V =

∑6
i=1 e

−rTiMi/Ns
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Underlying asset

Profit

(a)

Profit

Underlying asset

(b)

FIGURE 5. Payoff structures of the four-asset step-down ELS at times (a) t =
T1, T2, T3, T4, T5 and (b) t = T6.
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FIGURE 6. 4-asset ELS price versus the number of samples. Here, we plot
100 simulation results for each case.

4.3. CPU time. We compute the amount of CPU time needed to evaluate the 4-asset ELS
price using the Brownian bridge and standard MCS methods with the number of samples: 103,
5× 103, 104, 5× 104, and 105. Table 2 lists the CPU times for the Brownian bridge MCS and
standard MCS for 4-asset ELS with different number of samples. Furthermore, it shows the
ratio of the CPU times for both the approaches. Figure 7 shows the numerical results in Table
2 and demonstrates the Brownian bridge MCS is about 25 times faster than the standard MCS.
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FIGURE 7. Comparison of the elapsed time (in seconds).

TABLE 2. Comparison of the elapsed CPU time in seconds for four asset ELS.

M 103 5× 103 104 5× 104 105

Brownian bridge MCS 0.0058 0.0203 0.0404 0.2029 0.4077
Standard MCS 0.1016 0.5064 1.0150 5.0801 10.1682

Ratio 17.5089 24.9103 25.1441 25.0418 24.9412

5. CONCLUSION

In this paper, we developed a fast option pricing method for four asset ELS using Brownian
bridge and Monte Carlo simulation. Even though three asset ELS is the most popular ELS
among multi-asset ELSs, however, four asset ELS emerged as an alternative to three asset ELS
under low interest rate environment to give higher coupon rate to investors. We described in
detail the computational solution algorithm for the four underlying asset step-down ELS. The
numerical tests confirmed the accuracy and speed of the method compared to the standard
MCS.
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