DOI QR코드

DOI QR Code

REVIEW AND IMPLEMENTATION OF STAGGERED DG METHODS ON POLYGONAL MESHES

  • KIM, DOHYUN (SCHOOL OF MATHEMATICS AND COMPUTING (COMPUTATIONAL SCIENCE AND ENGINEERING), YONSEI UNIVERSITY) ;
  • ZHAO, LINA (DEPARTMENT OF MATHEMATICS, CITY UNIVERSITY OF HONG KONG) ;
  • PARK, EUN-JAE (SCHOOL OF MATHEMATICS AND COMPUTING (COMPUTATIONAL SCIENCE AND ENGINEERING), YONSEI UNIVERSITY)
  • Received : 2021.08.06
  • Accepted : 2021.09.23
  • Published : 2021.09.25

Abstract

In this paper, we review the lowest order staggered discontinuous Galerkin methods on polygonal meshes in 2D. The proposed method offers many desirable features including easy implementation, geometrical flexibility, robustness with respect to mesh distortion and low degrees of freedom. Discrete function spaces for locally H1 and H(div) spaces are considered. We introduce special properties of a sub-mesh from a given star-shaped polygonal mesh which can be utilized in the construction of discrete spaces and implementation of the staggered discontinuous Galerkin method. For demonstration purposes, we consider the lowest case for the Poisson equation. We emphasize its efficient computational implementation using only geometrical properties of the underlying mesh.

Keywords

Acknowledgement

The research of EJP was supported by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science and ICT (NRF-2015R1A5A1009350 and NRF-2019R1A2C2090021).

References

  1. E.L. Wachspress, A Rational Finite Element Basis, Academic Press, New York, New York, 1975.
  2. L. Beirao da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini and A. Russo, Basic principles of virtual element methods, Mathematical Models and Methods in Applied Sciences, 23 (2013), 199-214. https://doi.org/10.1142/S0218202512500492
  3. L. Beirao da Veiga, F. Brezzi, L. D. Marini and A. Russo The Hitchhiker's Guide to the Virtual Element Method, Mathematical Models and Methods in Applied Sciences, 24 (2014), 1541-1573. https://doi.org/10.1142/S021820251440003X
  4. D. A. Di Pietro, A. Ern and S. Lemaire, An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators, Computational Methods in Applied Mathematics, 14 (2014), 461-472. https://doi.org/10.1515/cmam-2014-0018
  5. D. A. Di Pietro and J. Droniou, The hybrid high-order method for polytopal meshes, Springer International Publishing, 2020.
  6. F. Bassi, L. Botti, A. Colombo, D. A. Di Pietro and P. Tesini, On the flexibility of agglomeration-based physical space discontinuous Galerkin discretizations, Journal of Compututational Physics, 231 (2012), 45-65. https://doi.org/10.1016/j.jcp.2011.08.018
  7. P. F. Antonietti, S. Giani and P. Houston, hp-version composite discontinuous Galerkin methods for elliptic problems on complicated domains, SIAM Journal on Scientific Computing, 35 (2013), A1417A1439. https://doi.org/10.1137/120877246
  8. J. Wang, and X. Ye, A weak Galerkin finite element method for second-order elliptic problems, Journal of Computational and Applied Mathematics, 241 (2013), 103-115. https://doi.org/10.1016/j.cam.2012.10.003
  9. L. Mu, J. Wang and X. Ye, Weak Galerkin finite element methods on polytopal meshes, International Journal of Numerical Analysis and Modeling, 12 (2015), 31-53.
  10. E. T. Chung and B. Engquist Optimal discontinuous Galerkin methods for wave propagation, SIAM Journal on Numerical Analysis, 44 (2006), 2131-2158. https://doi.org/10.1137/050641193
  11. E. T. Chung and B. Engquist Optimal discontinuous Galerkin methods for the acoustic wave equation in higher dimensions, SIAM Journal on Numerical Analysis, 47 (2009), 3820-3848. https://doi.org/10.1137/080729062
  12. E. T. Chung and W. Qiu, Analysis of an SDG method for the incompressible Navier-Stokes equations, SIAM Journal on Numerical Analysis, 55 (2017), 543-569. https://doi.org/10.1137/15M1038694
  13. E. T. Chung, P. Ciarlet Jr. and T. Yu, Convergence and superconvergence of staggered discontinuous Galerkin methods for the three-dimensional Maxwells equations on Cartesian grids, Journal on Computational Physics, 235 (2013), 14-31. https://doi.org/10.1016/j.jcp.2012.10.019
  14. E. T. Chung, H. H. Kim and O.B. Widlund, Two-level overlapping Schwarz algorithms for a staggered discontinuous Galerkin method, SIAM Journal on Numerical Analysis, 51 (2013), 47-67. https://doi.org/10.1137/110849432
  15. H. H. Kim, E. T. Chung and C. S. Lee, A staggered discontinuous Galerkin method for the Stokes system, SIAM Journal on Numerical Analysis, 51 (2013), 3327-3350. https://doi.org/10.1137/120896037
  16. E. T. Chung, C. Cockburn and G. Fu, The staggered DG method is the limit of a hybridizable DG method, SIAM Journal on Numerical Analysis, 52 (2014), 915-932. https://doi.org/10.1137/13091573X
  17. H. H. Kim, E. T. Chung and C.Y. Lam, Mortar formulation for a class of staggered discontinuous Galerkin methods, Computers & Mathematics with Applications, 71 (2016), 1568-1585. https://doi.org/10.1016/j.camwa.2016.02.035
  18. J.J. Lee and H. H. Kim, Analysis of a staggered discontinuous Galerkin method for linear elasticity, Journal of Scientific Computing, 66 (2016), 625-649. https://doi.org/10.1007/s10915-015-0036-1
  19. L. Zhao and E.-J. Park, Fully computable bounds for a staggered discontinuous Galerkin method for the Stokes equations, Computers & Mathematics with Applications, 75 (2018), 4115-4134. https://doi.org/10.1016/j.camwa.2018.03.018
  20. E. T. Chung, E.-J. Park and L. Zhao, Guaranteed a posteriori error estimates for a staggered discontinuous Galerkin method, Journal of Scientific Computing, 75 (2018), 1079-1101. https://doi.org/10.1007/s10915-017-0575-8
  21. L. Zhao and E.-J. Park, A priori and a posteriori error analysis for a staggered discontinuous Galerkin method for convection dominant diffusion equations, Journal of Computational and Applied Mathematics, 346 (2019), 63-83. https://doi.org/10.1016/j.cam.2018.06.040
  22. L. Zhao and E.-J. Park, A staggered discontinuous Galerkin method of minimal dimension on quadrilateral and polygonal meshes, SIAM Journal on Scientific Computing, 40 (2018), A2543-A2567. https://doi.org/10.1137/17M1159385
  23. L. Zhao, E.-J. Park and D.-w. Shin, A staggered DG method of minimal dimension for the Stokes equations on general meshes, Computer Methods in Applied Mechanics and Engineering, 345 (2019), 854-875. https://doi.org/10.1016/j.cma.2018.11.016
  24. L. Zhao and E.-J. Park, A lowest-order staggered DG method for the coupled Stokes-Darcy problem, IMA Journal of Numerical Analysis, 40 (2020), 2871-2897. https://doi.org/10.1093/imanum/drz048
  25. L. Zhao, E. T. Chung and M. Lam, A new staggered DG method for the Brinkman problem robust in the Darcy and Stokes limits, Computer Methods in Applied Mechanics and Engineering, 364 (2020), Paper No.112986, 13 pp.
  26. L. Zhao and E.-J. Park, A new hybrid staggered discontinuous Galerkin method on general meshes, Journal of Scientific Computing, 82 (2020), Paper No.12, 33 pp.
  27. L. Zhao and E.-J. Park, A staggered cell-centered DG method for linear elasticity on polygonal meshes, SIAM Journal on Scientific Computing, 42 (2020), A2158-A2181. https://doi.org/10.1137/19M1278016
  28. L. Zhao, E.-J. Park and E. T. Chung, Staggered discontinuous Galerkin methods for the Helmholtz equation with large wave number, Computers & Mathematics with Applications, 80 (2020), 2676-2690. https://doi.org/10.1016/j.camwa.2020.09.019
  29. L. Zhao, E. T. Chung, E.-J. Park, and G. Zhou, Staggered DG Method for Coupling of the Stokes and Darcy-Forchheimer Problems, SIAM Journal on Numerical Analysis 59 (2021), 1-31. https://doi.org/10.1137/19M1268525
  30. L. Zhao, D. Kim, E.-J. Park and E. Chung, Staggered DG method with small edges for Darcy flows in fractured porous media, https://arxiv.org/abs/2005.10955.
  31. D. Kim, L. Zhao and E.-J. Park, Staggered DG methods for the pseudostress-velocity formulation of the Stokes equations on general meshes, SIAM Journal on Scientific Computing, 42 (2020), A2537-A2560. https://doi.org/10.1137/20M1322170
  32. Y. Jeon, E.-J. Park, A hybrid discontinuous Galerkin method for elliptic problems, SIAM J. Numer. Anal. 48 (5) (2010) 1968-1983. https://doi.org/10.1137/090755102
  33. Y. Jeon, E.-J. Park, New locally conservative finite element methods on a rectangular mesh, Numerische Mathematik, 123 (2013), no.1, 97-119. https://doi.org/10.1007/s00211-012-0477-5
  34. Y. Jeon, E.-J. Park, D. Sheen, A hybridized finite element method for the Stokes problem, Computers & Mathematics with Applications Vol. 68, No. 12 Part B, (2014), 2222-2232. https://doi.org/10.1016/j.camwa.2014.08.005
  35. Y. Jeon, and E.-J. Park, D.-w. Shin, Hybrid Spectral Difference Methods for an Elliptic Equation, Comput. Methods Appl. Math. vol.17 no.2 (2017), 253-267. https://doi.org/10.1515/cmam-2016-0043
  36. S. Yadav, A. Pani, and E.-J. Park, Superconvergent discontinuous Galerkin methods for nonlinear elliptic equations, Math. Comp. 82 (2013), no. 283, 1297-1335. https://doi.org/10.1090/S0025-5718-2013-02662-2
  37. M.-Y. KIM AND M. F. WHEELER, A multiscale discontinuous galerkin method for convection-diffusion-reaction problems, Computers & Mathematics with Applications, 68 (2014), pp. 2251-2261. https://doi.org/10.1016/j.camwa.2014.08.007
  38. T. Arbogast, C. N. Dawson, P. T. Keenan, M. F. Wheeler, and I. Yotov, Enhanced cell-centered finite differences for elliptic equations on general geometry, SIAM Journal on Scientific Computing, 19 (1998), 404-425. https://doi.org/10.1137/S1064827594264545