DOI QR코드

DOI QR Code

Optimization of protoplast isolation and PEG-mediated transformation in Agaricus bisporus

양송이 원형질체 분리와 PEG 형질전환법의 최적화

  • Kim, Minseek (Mushroom Science Division, National Institute of Horticultural and Herbal Science, RDA) ;
  • Jang, Kab-yeul (Mushroom Science Division, National Institute of Horticultural and Herbal Science, RDA) ;
  • Lee, Yun-Sang (Mushroom Science Division, National Institute of Horticultural and Herbal Science, RDA) ;
  • Oh, Min Ji (Mushroom Science Division, National Institute of Horticultural and Herbal Science, RDA) ;
  • Im, Ji-Hoon (Mushroom Science Division, National Institute of Horticultural and Herbal Science, RDA) ;
  • Oh, Youn-Lee (Mushroom Science Division, National Institute of Horticultural and Herbal Science, RDA)
  • 김민식 (농촌진흥청 국립원예특작과학원 버섯과) ;
  • 장갑열 (농촌진흥청 국립원예특작과학원 버섯과) ;
  • 이윤상 (농촌진흥청 국립원예특작과학원 버섯과) ;
  • 오민지 (농촌진흥청 국립원예특작과학원 버섯과) ;
  • 임지훈 (농촌진흥청 국립원예특작과학원 버섯과) ;
  • 오연이 (농촌진흥청 국립원예특작과학원 버섯과)
  • Received : 2021.09.01
  • Accepted : 2021.09.25
  • Published : 2021.09.30

Abstract

Currently, button mushroom, Agaricus bisporus is one of the most consumed mushroom in the world. However, despite of its importance in food market, molecular genetic modification method for breeding of A. bisporus is not well established. In this study, we optimized yield of A. bisporus protoplast with Lysing enzyme, Chimax-N and cellulase. With this composition, 1.0 × 108/mL of protoplasts were obtained reliably. PEG-mediated transformation with spermidine showed almost 100-fold higher yield than non-spermidine method.

현재 양송이 품종의 개발은 1980년대에 개발된 방법에 의존하여 진행되고 있다. 유전자가위를 이용한 유전자교정 기술이 다양한 분야에서 각광받고 있고, 이 기술을 버섯 육종에도 적용하기 위하여 진행된 이 연구에서는, CRISPR/Cas9 활용에 필수적인 원형질체 분리 효율을 1.0 × 108/mL까지 안정적으로 끌어올렸고, spermidine을 이용하여 PEG 형질전환의 효율 또한 기존 방법에 비해 100배가량 끌어올렸음을 보고한다.

Keywords

Acknowledgement

본 결과물은 농촌진흥청 신육종기술실용화사업단 '미래 시장 대응 유전자 교정기술 활용 양송이 육종 소재 개발(PJ01516501)' 주관과제의 예산을 지원받았습니다.

References

  1. Royse DJ, Baars J, Tan Q. 2017. Current Overview of Mushroom Production in the World. Edible and Medicinal Mushrooms: Technology and Applications 5-13.
  2. MAFRA. 2020. Ministry of Agriculture, Food and Rural Affairs 2019. 64-67.
  3. Sonnenberg AS, Baars JJ, Gao W, Visser RG. 2017. Developments in breeding of Agaricus bisporus var. bisporus: progress made and technical and legal hurdles to take. Appl Microbiol Biotechnol 101(5): 1819-1829. https://doi.org/10.1007/s00253-017-8102-2
  4. Oh YL, Jang KY, Oh MJ, Im JH. 2021. Development of a spawning method using liquid inoculum of Agaricus bisporus. J mushroom 19(2): 109-113 https://doi.org/10.14480/JM.2021.19.2.109
  5. Kim H, Kim ST, Ryu J, Choi MK, Kweon J, Kang BC, Ahn HM, Bae S, Kim JS, Kim SG. 2016 A simple, flexible and high-throughput cloning system for plant genome editing via CRISPR-Cas system. J Integr Plant Biol 58(8): 705-712 https://doi.org/10.1111/jipb.12474
  6. Gang Li, Ruixue Li, Qiuyun Liu, Qiang Wang, Min Chen, Baojian Li. 2006. A highly efficient polyethylene glycol-mediated transformation method for mushrooms. FEMS Microbiol Lett 256(2): 203-208 https://doi.org/10.1111/j.1574-6968.2006.00110.x
  7. Chen X, Stone M, Schlagnhaufer C, Romaine CP. 2000. A Fruiting Body Tissue Method for Efficient Agrobacterium-Mediated Transformation of Agaricus bisporus. Appl Environ Microbiol 66(10): 4510-4513. https://doi.org/10.1128/AEM.66.10.4510-4513.2000