DOI QR코드

DOI QR Code

RIGHT-ANGLED ARTIN GROUPS ON PATH GRAPHS, CYCLE GRAPHS AND COMPLETE BIPARTITE GRAPHS

  • 투고 : 2021.08.04
  • 심사 : 2021.08.30
  • 발행 : 2021.09.30

초록

For a finite simplicial graph 𝚪, let G(𝚪) denote the right-angled Artin group on the complement graph of 𝚪. For path graphs Pk, cycle graphs C and complete bipartite graphs Kn,m, this article characterizes the embeddability of G(Kn,m) in G(Pk) and in G(C).

키워드

과제정보

This work was partially supported by NRF-2018R1D1A1B07043291. This work was partially supported by NRF-2018R1D1A1B07043268.

참고문헌

  1. M. Casals-Ruiz, A. Duncan and I. Kazachkov, Embeddings between partially commutative groups: two counterexamples, J. Algebra. 390 (2013), 87-99. https://doi.org/10.1016/j.jalgebra.2013.04.036
  2. R. Charney and K. Vogtmann, Finiteness properties of automorphism groups of rightangled Artin groups, Bull. Lond. Math. Soc. 41 (2009), 94-102. https://doi.org/10.1112/blms/bdn108
  3. J. Crisp, M. Sageev and M. Sapir, Surface subgroups of right-angled Artin groups, Internat. J. Algebra Comput. 18 (2008), 443-491. https://doi.org/10.1142/S0218196708004536
  4. C. Droms, Isomorphisms of graph groups, Proc. Amer. Math. Soc. 100 (1987), 407-408. https://doi.org/10.1090/S0002-9939-1987-0891135-1
  5. T. Katayama, Right-angled Artin groups and full subgraphs of graphs, J. Knot Theory Ramifications. 26 (2017), 1750059. https://doi.org/10.1142/S0218216517500596
  6. T. Katayama, Embeddability of right-angled Artin groups on the complements of linear forests, J. Knot Theory Ramifications. 27 (2018), 1850010. https://doi.org/10.1142/S0218216518500104
  7. S.-h. Kim, Co-contractions of graphs and right-angled Artin groups, Algebr. Geom. Topol. 8 (2008), 849--868. https://doi.org/10.2140/agt.2008.8.849
  8. S.-h. Kim and T. Koberda, Embedability between right-angled Artin groups, Geom. Topol. 17 (2013), 493-530. https://doi.org/10.2140/gt.2013.17.493
  9. S.-h. Kim and T. Koberda, Anti-trees and right-angled Artin subgroups of braid group, Geom. Topol. 19 (2015), 3289-3306. https://doi.org/10.2140/gt.2015.19.3289
  10. E.-K. Lee and S.-J. Lee, Path lifting properties and embedding between RAAGs, J. Algebra. 448 (2016), 575-594. https://doi.org/10.1016/j.jalgebra.2015.09.010
  11. E.-K. Lee and S.-J. Lee, Embeddability of right-angled Artin groups on complements of trees, Internat. J. Algebra Comput. 28 (2018), 381-394. https://doi.org/10.1142/S0218196718500182
  12. H. Servatius, Automorphisms of graph groups, J. Algebra. 126 (1989), 179-197. https://doi.org/10.1016/0021-8693(89)90319-0