DOI QR코드

DOI QR Code

Analysis of Bus Accident Severity Using K-Means Clustering Model and Ordered Logit Model

K-평균 군집모형 및 순서형 로짓모형을 이용한 버스 사고 심각도 유형 분석 측면부 사고를 중심으로

  • 이인식 (아주대학교 교통시스템공학과) ;
  • 이현미 (아주대학교 교통시스템공학과) ;
  • 장정아 (아주대학교 TOD 기반 지속가능 도시교통, 연구센터) ;
  • 이용주 (아주대학교 TOD 기반 지속가능 도시교통, 연구센터)
  • Received : 2021.07.23
  • Accepted : 2021.09.13
  • Published : 2021.09.30

Abstract

Although accident data from the National Police Agency and insurance companies do not know the vehicle safety, the damage level information can be obtained from the data managed by the bus credit association or the bus company itself. So the accident severity was analyzed based on the side impact accidents using accident repair cost. K-means clustering analysis separated the cost of accident repair into 'minor', 'moderate', 'severe', and 'very severe'. In addition, the side impact accident severity was analyzed by using an ordered logit model. As a result, it is appeared that the longer the repair period, the greater the impact on the severity of the side impact accident. Also, it is appeared that the higher the number of collision points, the greater the impact on the severity of the side impact accident. In addition, oblique collisions of the angle of impact were derived to affect the severity of the accident less than right angle collisions. Finally, the absence of opponent vehicle and large commercial vehicles involved accidents were shown to have less impact on the side impact accident severity than passenger cars.

Keywords

Acknowledgement

본 연구는 국토교통부 수소버스 안전성 평가기술 및 장비개발 사업의 연구비 지원(과제번호 21HBST-B158067-02)에 의해 수행되었습니다.

References

  1. Barua, U. and Tay, R., 2010, "Severity of urban transit bus crashes in Bangladesh", Journal of Advanced Transportation, Vol. 44, No. 1, pp. 34~41. https://doi.org/10.1002/atr.104
  2. 한수산, 박병호, 2011, "순서형 로짓 모형을 이용한 사고 심각도 비교 분석: 청주시를 사례로", 국토계획, Vol. 46, No. 2, pp. 183~192.
  3. Feng, S., Li, Z., Ci, Y. and Zhang, G., 2016, "Risk factors affecting fatal bus accident severity: Their impact on different types of bus drivers", Accident Analysis & Prevention, Vol. 86, pp. 29~39. https://doi.org/10.1016/j.aap.2015.09.025
  4. Briand, A. S., Come, E., Mohamed, K. and Oukhellou, L., 2016, "A mixture model clustering approach for temporal passenger pattern characterization in public transport", International Journal of Data Science and Analytics, Vol. 1, No. 1, pp. 37~50. https://doi.org/10.1007/s41060-015-0002-x
  5. Mondal, M. A. and Rehena, Z., 2019, "Identifying traffic congestion pattern using K-means clustering technique", In 2019 4th International Conference on Internet of Things: Smart Innovation and Usages (IoT-SIU), pp. 1~5.
  6. 빈미영, 손슬기, 2019, "버스운전자 안전운행지원을 위한 교통사고 분석 연구", 한국 ITS 학회 논문지, Vol. 18, No. 1, pp. 14~26.
  7. 이인묵, 민재홍, 김경태, 고승영, 2020, "k-means 클러스터링을 활용한 교통카드데이터 기반의 대중교통 이용자 통행패턴 생성", 한국철도학회 논문집, Vol. 23, No. 3, pp. 204~215.
  8. 김형준, 장정아, 이인식, 이용주, 오세창, 2020, "버스 실사고 데이터 구축을 통한 대표 버스충돌유형분석 연구", 자동차안전학회지, Vol. 12, No. 4, pp. 39~47. https://doi.org/10.22680/KASA2020.12.4.039
  9. MacQueen, J., 1967, "Some methods for classification and analysis of multivariate observations", In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, Vol. 1, No. 14, pp. 281~297.
  10. McKelvey, R. D. and Zavoina, W., 1975, "A statistical model for the analysis of ordinal level dependent variables", Journal of mathematical sociology, Vol. 4, No. 1, pp. 103~120. https://doi.org/10.1080/0022250X.1975.9989847