References
- KyungHee University Medical Center (2021.07.25). Medical Commons:Diabetes. https://www.khuh.or.kr/04/01.php? hospitalpath=md&table=mdlecture&page=1&command=view_article&key=262&s_key=&keycode=&keycode2=
- Ruth S Weinstock. (2021.05.20). Patient education: Blood glucose monitoring in diabetes (Beyond the Basics). https://www.uptodate.com/contents/blood-glucose-monitoring-in-diabetes-beyond-the-basics
- Wolfsdorf, Joseph & Glaser, Nicole & Agus, Michael & Fritsch, Maria & Hanas, Ragnar & Rewers, Arleta & Sperling, Mark & Codner, Ethel. (2018). Diabetic Ketoacidosis and Hyperglycemic Hyperosmolar State: A Consensus Statement from the International Society for Pediatric and Adolescent Diabetes. Pediatric Diabetes. 19 Suppl 27. DOI : 10.1111/pedi.12701.
- Yanggyo Kang. (2019). Glucose Management Using Continuous Glucose Monitors. J Korean Diabetes 2019;20:42-46. DOI : 10.4093/jkd.2019.20.1.42
- Korean Diabetes Association. (2016.03.23). 2015 Treatment Guidelines for Diabetes. Gold Planning. Seoul. https://www.diabetes.or.kr
- Ganz, T., Wainstein, J., Gilad, S., Limor, R., Boaz, M., & Stern, N. (2017). Serum asymmetric dimethylarginine and arginine levels predict microvascular and macrovascular complications in type 2 diabetes mellitus. Diabetes/metabolism research and reviews, 33(2), DOI : 10.1002/dmrr.2836
- American Diabetes Association. (2009). Diagnosis and Classification of Diabetes Mellitus. Diabetes Care. Vol. 32 (Supplement 1) S62-S67; DOI: 10.2337/dc09-S062
- Hovorka R. (2015). Artificial Pancreas Project at Cambridge 2013. Diabetic medicine : a journal of the British Diabetic Association, 32(8), 987-992. DOI : 10.1111/dme.12766
- Sudharsan, B., Peeples, M., & Shomali, M. (2015). Hypoglycemia prediction using machine learning models for patients with type 2 diabetes. Journal of diabetes science and technology, 9(1), 86-90. DOI : 10.1177/1932296814554260
- Zhang, L., Wang, Y., Niu, M., Wang, C., & Wang, Z. (2020). Machine learning for characterizing risk of type 2 diabetes mellitus in a rural Chinese population: the Henan Rural Cohort Study. Scientific reports, 10(1), 4406. DOI : 10.1038/s41598-020-61123-x
- Plis, K., Bunescu, R.C., Marling, C., Shubrook, J., & Schwartz, F. (2014). A Machine Learning Approach to Predicting Blood Glucose Levels for Diabetes Management. AAAI Workshop: Modern Artificial Intelligence for Health Analytics.
- Pustozerov, E., Popova, P., Tkachuk, A., Bolotko, Y., Yuldashev, Z., & Grineva, E. (2018). Development and Evaluation of a Mobile Personalized Blood Glucose Prediction System for Patients With Gestational Diabetes Mellitus. JMIR mHealth and uHealth, 6(1), e6. DOI : 10.2196/mhealth.9236
- Konstam M. A. (2012). Home monitoring should be the central element in an effective program of heart failure disease management. Circulation, 125(6), 820-827. DOI : 10.1161/CIRCULATIONAHA.111.031161
- Fye W. B. (1994). A history of the origin, evolution, and impact of electrocardiography. The American journal of cardiology. 73(13). 937-949. DOI : 10.1016/0002-9149(94)90135-x
- Gordon J. W. (1877). Certain Molar Movements of the Human Body produced by the Circulation of the Blood. Journal of anatomy and physiology, 11(Pt 3), 533-536.
- Alvarado-Serrano, C., Luna-Lozano, P.S., & Pallas-Areny, R. (2016). An algorithm for beat-to-beat heart rate detection from the BCG based on the continuous spline wavelet transform. Biomed. Signal Process. Control., 27, 96-102. DOI : 10.1016/j.bspc.2016.02.002.
- Murata, (2020.09.10). Contactless Bed Sensor, Inertial force Sensor. Murata Manufacturing Co., Ltd. http://www.murata.com/products/sensor/accel/sca10h_11h.
- Amos, A. F., McCarty, D. J., & Zimmet, P. (1997). The rising global burden of diabetes and its complications: estimates and projections to the year 2010. Diabetic medicine : a journal of the British Diabetic Association, 14 Suppl 5, S1-S85.
- Korean Diabetes Association. (2021.04.05) 2021 Diabetes Treatment Guidelines Guidelines. https://www.diabetes.or.kr/pro/publish/guide.php?mode=list
- Heinemann, L., & Boecker, D. (2011). Lancing: quo vadis?. Journal of diabetes science and technology, 5(4), 966-981. DOI : 10.1177/193229681100500420
- Lyandres, O., Yuen, J. M., Shah, N. C., VanDuyne, R. P., Walsh, J. T., & Glucksberg, M. R. (2008). Progress toward an in vivo surface-enhanced Raman spectroscopy glucose sensor. Diabetes technology & therapeutics, 10(4), 257-265. DOI : 10.1089/dia.2007.0288
- Wahr, J. A., Tremper, K. K., Samra, S., & Delpy, D. T. (1996). Near-infrared spectroscopy: theory and applications. Journal of cardiothoracic and vascular anesthesia, 10(3), 406-418. DOI : 10.1016/s1053-0770(96)80107-8
- Siesler, Heinz & Ozaki, Yukihiro & Kawata, S. & Heise, Herbert. (2002). Near-Infrared Spectroscopy: Principles, Instruments, Applications. 16. 636-638.
- Sbrignadello, Stefano & Tura, Andrea & Ravazzani, Paolo. (2013). Electroimpedance Spectroscopy for the Measurement of the Dielectric Properties of Sodium Chloride Solutions at Different Glucose Concentrations. Journal of Spectroscopy. 2013. DOI : 10.1155/2013/571372.
- Murata Electronics. (2021.4.15). Acceleration Sensor Modules SCA11H-A01-036 Data Sheet. https://www.murata.com/en-global/products/sensor/accel/overview/lineup/sca10h_11h.
- Ministry of Food and Drug Safety. (2019.09.23). Blood glucose monitoring systems, self-testing. https://udiportal.mfds.go.kr/brd/view/P03_01?ntceSn=14
- Accu-chek Instant. (2019. 3. 21). User's Manual; Blood Glucose Meter. https://www.accu-chekcac.com/en/download/file/fid/13361
- Murata Electronics. (2015.11.12). Ballistocaiographic sensors provide contact-less approach to measuring patient vital signs. https://www.murata.com/en-eu/products/info/sensor/accel/2015/1112
- Sami Nurmi, (2016). Nocturnal sleep quality and quantity analysis with ballistocardiography. School of Electrical Engineering, Espoo, Finland, 2016.
- Sang-Ki, Choi., Geo-Lyong, Lee., (2020). Heart rate monitoring and predictability of diabetes using ballistocardiogram(pilot study). Journal of Digital Convergence. Vol.18. No.8. 231-242. 10.14400/JDC.2020.18.8.231
- Clarke, W. L., Cox, D., Gonder-Frederick, L. A., Carter, W., & Pohl, S. L. (1987). Evaluating clinical accuracy of systems for self-monitoring of blood glucose. Diabetes care, 10(5), 622-628. DOI : 10.2337/diacare.10.5.622
- Benichou, T., Pereira, B., Mermillod, M., Tauveron, I., Pfabigan, D., Maqdasy, S., & Dutheil, F. (2018). Heart rate variability in type 2 diabetes mellitus: A systematic review and meta-analysis. PloS one, 13(4), e0195166. DOI : 10.1371/journal.pone.0195166
- Minato, S., Takenouchi, A., Uchida, J., Tsuboi, A., Kurata, M., Fukuo, K., & Kazumi, T. (2017). Association of Whole Blood Viscosity With Metabolic Syndrome in Type 2 Diabetic Patients: Independent Association With Post-Breakfast Triglyceridemia. Journal of clinical medicine research, 9(4), 332-338. DOI : 10.14740/jocmr2885w
- Ahn, C. W.. (2014). Clinical study for diagnostic efficacy of diabetic angiopathy using hemorheological measurement system (RheoScan). MOHW. Health Technology R&D Project. Yonsei University Industry-Academic Innovation Team
- Clarke W. L. (2005). The original Clarke Error Grid Analysis (EGA). Diabetes technology & therapeutics, 7(5), 776-779. DOI : 10.1089/dia.2005.7.776