Acknowledgement
This work was supported by Kyungnam University Foundation Grant in 2020.
References
- Cisco. (2018). Cisco Cisco Visual NetworkingIndex: Forecast and Trends, 2017-2022
- Yang, Y. M., Park, S. T., & Kim, Y. M. (2020). A Study on Reinforcing Non-Identifying Personal Sensitive Information Management on IoT Environment. The Journal of the Korea Contents Association, 20(8), 34-41. https://doi.org/10.5392/JKCA.2020.20.08.034
- I. Alrashdi, A. Alqazzaz, E. Aloufi, R. Alharthi, M. Zohdy & H. Ming. (2019). "AD-IoT: Anomaly Detection of IoT Cyberattacks in Smart City Using Machine Learning" 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC), 305-310. DOI: 10.1109/CCWC.2019.8666450
- T. Greene. (2016). IT WORLD. https://www.itworld.co.kr/news/101726
- S. Pokhrel, R. Abbas & Bhulok Aryal.(2021). IoT Security: Botnet detection in IoT using Machine learning. arXiv:2104.02231
- L. Xiao, X. Wan, X. Lu, Y. Zhang & Di Wu. (2018). IoT Security Techniques Based on Machine Learning. IEEE Signal Processing Magazine Sept. 41 - 49, DOI: 10.1109/MSP.2018.2825478
- N. Koroniotis, N. Moustafa1, E. Sitnikova & J. Slay. (2017). Towards Developing Network Forensic Mechanism for Botnet Activities in the IoT Based on Machine Learning Techniques. International Conference on Mobile Networks and Management, 30-44. DOI: 10.1007/978-3-319-90775-8_3
- S.S-Khah, P.F Marteau, N. Bechet. (2017). Intrusion detection in network systems through hybrid supervised and unsupervised mining process-a detailed case study on the ISCX benchmark dataset. Data Intelligence and Security (ICDIS). DOI: 10.1109/ICDIS.2018.00043
- Hayretdin Bahsi, Sven Nomm, Fabio Benedetto & La Torre.(2018). Dimensionality Reduction for Machine Learning Based IoT Botnet Detection. 15th International Conference ICARCV Singapore, November. DOI: 10.1109/ICARCV.2018.8581205
- M. Zolanvari, M.A. Teixeira, L. Gupta ,K.M. Khan, & R.Jain. (2019) Machine Learning-Based Network Vulnerability Analysis of Industrial Internet of Things. IEEE Internet of Things Journal Volume: 6. DOI: 10.1109/JIOT.2019.2912022
- M. Shafiq, Z. Tian, A.K. Bashir & X. Du. (2020). CorrAUC: a Malicious Bot-IoT Traffic Detection Method in IoT Network Using Machine Learning Techniques. IEEE Internet of Things Journal Volume: 8, DOI: 10.1109/JIOT.2020.3002 255
- R. Sommer & V. Paxson.(2010). Outside the Closed World: On Using Machine Learning For Network Intrusion Detection. IEEE Symposium on Security and Privacy, IEEE, 305-316. DOI:10.1109/SP. Computer Systems 100 ,779-796. https://doi.org/10.1016/j.future.2019.05.041
- I. Sharafaldin, A. H Lashkari & A. Ghorbani.(2018). Toward Generating a New Intrusion Detection Dataset and Intrusion Traffic Characterization. In Proceedings of the 4th International Conference on Information Systems Security and Privacy, 108-116. DOI: 10.5220/0006639801080116
- K. Nickolaos, N. Moustafa, E. Sitnikova, & B. Turnbull. (2019). Towards the development of realistic botnet dataset in the internet of things for network forensic analytics Bot-Iot dataset. Future Generation
- M. H. Bhuyan, D. K. Bhattacharyya, J. K. Kalita. (2015). Towards generating reallife datasets for network intrusion detection, IJ Network Security 17(6). 675-693.
- N. . Moustafa, J. Slay. (2015). Unsw-nb15: a comprehensive data set for network intrusion detection systems(unsw-nb15 network data set), Military Communications and Information Systems Conference (MilCIS), IEEE, pp. 1-6. DOI: 10.1109/MilCIS.2015.7348942
- A. Ammar.(2015) A decision tree classifier for intrusion detection priority tagging, Journal of Computer and Communications 3(4) 52-58, DOI:10.4236/jcc.2015.34006
- The BoT-IoT Dataset https://cloudstor.aarnet.edu.au/plus/s/umT99TnxvbpkkoE?path=%2FCSV