DOI QR코드

DOI QR Code

Advanced atomic force microscopy-based techniques for nanoscale characterization of switching devices for emerging neuromorphic applications

  • Young-Min Kim (School of Integrated Technology, Yonsei University) ;
  • Jihye Lee (School of Integrated Technology, Yonsei University) ;
  • Deok-Jin Jeon (School of Integrated Technology, Yonsei University) ;
  • Si-Eun Oh (Nano Science and Engineering, Integrated Science and Engineering Division, Yonsei University) ;
  • Jong-Souk Yeo (School of Integrated Technology, Yonsei University)
  • 투고 : 2021.01.14
  • 심사 : 2021.05.07
  • 발행 : 2021.12.31

초록

Neuromorphic systems require integrated structures with high-density memory and selector devices to avoid interference and recognition errors between neighboring memory cells. To improve the performance of a selector device, it is important to understand the characteristics of the switching process. As changes by switching cycle occur at local nanoscale areas, a high-resolution analysis method is needed to investigate this phenomenon. Atomic force microscopy (AFM) is used to analyze the local changes because it offers nanoscale detection with high-resolution capabilities. This review introduces various types of AFM such as conductive AFM (C-AFM), electrostatic force microscopy (EFM), and Kelvin probe force microscopy (KPFM) to study switching behaviors.

키워드

과제정보

This research was supported by the Ministry of Trade and Industry, the Energy/Korea Evaluation Institute of Industrial Technology (MOTIE/KEIT, project number 10080625), the Korea Semiconductor Research Consortium (KSRC) program for the development of future semiconductor devices, and Samsung Electronics. This study was also supported under the framework of the Center for Social Engagement program managed by the Institute of Convergence Science, Yonsei University.

참고문헌

  1. V. Adinolfi, L. Cheng, M. Laudato, R.C. Clarke, V.K. Narasimhan, S. Balatti, S. Hoang, K.A. Littau, Composition-controlled atomic layer deposition of phase-change memories and ovonic threshold switches with high performance. ACS Nano 13, 10440-10447 (2019) 
  2. R. Arinero, J. Trasobares, P. Girard, M. Ramonda, N. Clement, Temperature and damping effects on the frequency dependence of electrostatic force microscopy force gradients. J. Appl. Phys. 114, 214315 (2013) 
  3. J.L. Bosse, I. Grishin, Y. Gyu Choi, B.-k. Cheong, S. Lee, O.V. Kolosov, B.D. Huey, Nanosecond switching in GeSe phase change memory films by atomic force microscopy. Appl. Phys. Lett. 104, 053109 (2014) 
  4. G.W. Burr, B.N. Kurdi, J.C. Scott, C.H. Lam, K. Gopalakrishnan, R.S. Shenoy, Overview of candidate device technologies for storage-class memory. IBM J. Res. Dev. 52, 449-464 (2008) 
  5. U. Celano, L. Goux, A. Belmonte, K. Opsomer, A. Franquet, A. Schulze, C. Detavernier, O. Richard, H. Bender, M. Jurczak, Three-dimensional observation of the conductive filament in nanoscaled resistive memory devices. Nano Lett. 14, 2401-2406 (2014) 
  6. O. Cherniavskaya, L. Chen, V. Weng, L. Yuditsky, L.E. Brus, Quantitative noncontact electrostatic force imaging of nanocrystal polarizability. J. Phys. Chem. B. 107, 1525-1531 (2003) 
  7. Y. Du, A. Kumar, H. Pan, K. Zeng, S. Wang, P. Yang, A.T.S. Wee, The resistive switching in TiO2 films studied by conductive atomic force microscopy and kelvin probe force microscopy. AIP Adv. 3, 082107 (2013) 
  8. V. Fuentes, B. Vasic, Z. Konstantinovic, B. Martinez, L. Balcells, A. Pomar, Resistive switching in strontium iridate based thin films. J. Magn. Magn. Mater. 501, 166419 (2020) 
  9. F. Golek, P. Mazur, Z. Ryszka, S. Zuber, AFM image artifacts. Appl. Surf. Sci. 304, 11-19 (2014) 
  10. D. Ielmini, S. Ambrogio, Emerging neuromorphic devices. Nanotechnol. 31, 092001 (2019) 
  11. D. Ielmini, Y. Zhang, Analytical model for subthreshold conduction and threshold switching in chalcogenide-based memory devices. J. Appl. Phys. 102, 054517 (2007) 
  12. J.H. Ju, S.K. Jang, H. Son, J.-H. Park, S. Lee, High performance bi-layer atomic switching devices. Nanoscale 9, 8373-8379 (2017) 
  13. K. Kajimoto, K. Araki, Y. Usami, H. Ohoyama, T. Matsumoto, Visualization of charge migration in conductive polymers via time-resolved electrostatic force microscopy. J. Phys. Chem. A 124, 5063-5070 (2020) 
  14. M. Kumar, T. Som, Structural defect-dependent resistive switching in cu-O/Si studied by kelvin probe force microscopy and conductive atomic force microscopy. Nanotechnology 26, 345702 (2015) 
  15. M. Lanza, A review on resistive switching in high-k dielectrics: A nanoscale point of view using conductive atomic force microscope. Materials 7, 2155-2182 (2014) 
  16. M. Lanza, U. Celano, F. Miao, Nanoscale characterization of resistive switching using advanced conductive atomic force microscopy based setups. J. Electroceram. 39, 94-108 (2017) 
  17. M.H. Lee, C.S. Hwang, Resistive switching memory: Observations with scanning probe microscopy. Nanoscale 3, 490-502 (2011) 
  18. D. Lencer, M. Salinga, B. Grabowski, T. Hickel, J. Neugebauer, M. Wuttig, A map for phase-change materials. Nat. Mater. 7, 972-977 (2008) 
  19. C. Maragliano, S. Lilliu, M. Dahlem, M. Chiesa, T. Souier, M. Stefancich, Quantifying charge carrier concentration in ZnO thin films by scanning kelvin probe microscopy. Sci. Rep. 4, 4203 (2014) 
  20. P. Noe, A. Verdy, F. d'Acapito, J.-B. Dory, M. Bernard, G. Navarro, J.-B. Jager, J. Gaudin, J.-Y. Raty, Toward ultimate nonvolatile resistive memories: The mechanism behind ovonic threshold switching revealed. Sci. Adv. 6, eaay2830 (2020) 
  21. S. O'shea, R. Atta, M. Murrell, M. Welland, Conducting atomic force microscopy study of silicon dioxide breakdown. J. Vac. Sci. Technol. B 13, 1945-1952 (1995) 
  22. W. Polspoel, W. Vandervorst, Evaluation of trap creation and charging in thin SiO2 using both SCM and C-AFM. Microelectron. Eng. 84, 495-500
  23. A. Pradel, N. Frolet, M. Ramonda, A. Piarristeguy, M. Ribes, Bipolar resistance switching in chalcogenide materials. Phys. Status Solidi A 208, 2303-2308 (2011) 
  24. J. Y. Raty, P. Noe, Ovonic Threshold Switching in Se-Rich GexSe1-x Glasses from an Atomistic Point of View: The Crucial Role of the Metavalent Bonding Mechanism. Phys. Status. Solidi-R. 1900581 (2020) 
  25. V.K. Sangwan, D. Jariwala, I.S. Kim, K.-S. Chen, T.J. Marks, L.J. Lauhon, M.C. Hersam, Gate-tunable memristive phenomena mediated by grain boundaries in single-layer MoS 2. Nat. Nanotechnol. 10, 403-406 (2015) 
  26. K.J. Savage, M.M. Hawkeye, R. Esteban, A.G. Borisov, J. Aizpurua, J.J. Baumberg, Revealing the quantum regime in tunnelling plasmonics. Nature 491, 574-577 (2012) 
  27. B. Song, H. Xu, S. Liu, H. Liu, Q. Li, Threshold switching behavior of Ag-SiTe-based selector device and annealing effect on its characteristics. IEEE J. Electron. Devices Soc. 6, 674-679 (2018) 
  28. T. Thundat, X.-Y. Zheng, G. Chen, R. Warmack, Role of relative humidity in atomic force microscopy imaging. Surf. Sci. Lett. 294, L939-L943 (1993) 
  29. J. Wang, Z. Lv, X. Xing, X. Li, Y. Wang, M. Chen, G. Pang, F. Qian, Y. Zhou, S.T. Han, Optically modulated threshold switching in Core-Shell quantum dot based Memristive device. Adv. Funct. Mater. 30, 1909114 (2020) 
  30. R. Waser, M. Aono, Nanoionics-based resistive switching memories. Nat. Mater. 6, 833-840 (2007) 
  31. X. Xu, H. Lv, H. Liu, T. Gong, G. Wang, M. Zhang, Y. Li, Q. Liu, S. Long, M. Liu, Superior retention of low-resistance state in conductive bridge random access memory with single filament formation. IEEE Electron. Device Lett. 36, 129-131 (2014) 
  32. M. Yan, G.H. Bernstein, A quantitative method for dual-pass electrostatic force microscopy phase measurements. Surf. Interface Anal. 39, 354-358 (2007) 
  33. Y. Yang, R. Huang, Probing memristive switching in nanoionic devices. Nat. Electron. 1, 274-287 (2018) 
  34. Y. Yang, X. Zhang, L. Qin, Q. Zeng, X. Qiu, R. Huang, Probing nanoscale oxygen ion motion in memristive systems. Nat. Commun. 8, 1-10 (2017) 
  35. I. Yoo, B. Kang, Y. Park, M. Lee, Y. Park, Interpretation of nanoscale conducting paths and their control in nickel oxide (NiO) thin films. Appl. Phys. Lett. 92, 202112 (2008) 
  36. J. Yoo, S.H. Kim, S.A. Chekol, J. Park, C. Sung, J. Song, D. Lee, H. Hwang, 3D stackable and scalable binary ovonic threshold switch devices with excellent thermal stability and low leakage current for high-density cross-point memory applications. Adv. Electron. Mater. 5, 1900196 (2019) 
  37. J. Zhu, T. Zhang, Y. Yang, R. Huang, A comprehensive review on emerging artificial neuromorphic devices. Appl. Phys. Rev. 7, 011312 (2020) 
  38. M. Zhu, K. Ren, Z. Song, Ovonic threshold switching selectors for three-dimensional stackable phase-change memory. MRS Bull. 44, 715-720 (2019)