DOI QR코드

DOI QR Code

광평옥과 다청옥의 수이삭과 수염에서 안토시아닌 생합성 유전자 발현 분석

Expression Analysis of Anthocyanin Biosynthetic Genes of Tassel and Silks in Gwangpyeongok and Dacheongok

  • 고영삼 (농촌진흥청 국립식량과학원 중부작물부) ;
  • 배환희 (농촌진흥청 국립식량과학원 중부작물부) ;
  • 최유찬 (농촌진흥청 국립식량과학원 중부작물부) ;
  • 손재한 (농촌진흥청 국립식량과학원 중부작물부) ;
  • 하준영 (농촌진흥청 국립식량과학원 중부작물부) ;
  • 신성휴 (농촌진흥청 국립식량과학원 중부작물부) ;
  • 정태욱 (농촌진흥청 국립식량과학원 중부작물부)
  • Go, Young Sam (Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Bae, Hwan Hee (Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Choi, Yu Chan (Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Son, Jae Han (Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Ha, Jun Young (Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Shin, Seong Hyu (Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Jung, Tae Wook (Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration)
  • 투고 : 2021.04.09
  • 심사 : 2021.07.19
  • 발행 : 2021.09.01

초록

본 실험은 광평옥과 다청옥 품종의 수이삭과 수염을 대상으로 안토시아닌 생합성 관련 분자생물학적 및 이화학적 특성을 검토하여 향후 기능성 옥수수 개발에 필요한 기초자료로 활용하고자 수행되었다. 1. 광평옥에서는 수이삭과 수염에서 모두 안토시아닌이 형성되지 않은 반면, 다청옥에서는 모두 형성되었다. 전체 안토시아닌 함량은 수이삭과 수염에서 모두 다청옥이 광평옥에 비해 30배 정도 높았다. 또한, 안토시아닌 성분은 다청옥의 수이삭에서 C-3-G만 측정되었고, 수염에서는 각각 C-3-G는 45.2배, Pg-3-G는 27.3배, M-3-G는 37.6배 광평옥에 비해 더 검출되었다. 2. 광평옥의 수이삭에서 F3'H, DFR, GST 유전자가 발현이 감소하였고, 수염에서는 F3'H와 DFR 유전자가 발현이 감소하였다. 반대로 다청옥에서는 수염에서 DFR 유전자만 발현이 감소되었고, 나머지 유전자들은 정상적으로 발현되었다. 또한 안토시아닌 생합성 유전자들의 발현을 조절하는 전사조절인자는 광평옥 수이삭에서는 P1이 수염에서는 R1이 관여한다는 사실을 확인하였다. 3. 광평옥의 수이삭과 수염에서 다청옥에 비해 각각 linoleic acid (C18:2)가 6.6%, 10.9% 감소하고, linolenic acid (18:3)는 8.5%, 8.5% 증가하였다. 또한, 광평옥의 수염에서는 palmitic acid (C16:0)가 4.1% 증가하고, oleic acid (C18:1)는 다청옥에 비해 2.1% 감소하였다. 그러나 stearic acid (18:0)는 수이삭과 수염에서 성분 변화가 전혀 없었다. 그리고 광평옥의 수이삭과 수염의 전체 지방산 함량은 광평옥에 비해 각각 10.3%, 30.4% 증가하였고, 각 지방산 성분과 함량 분석은 유사한 결과를 보여주었다. 그러나 phytosterol 성분 분석에서는 유의미한 결과를 확인할 수가 없었다.

Anthocyanins are known to be involved in various functions such as antioxidant and antibacterial activities in plants. Although studies on anthocyanins in corn have been conducted recently, basic research related to anthocyanin biosynthesis is insufficient. In this study, we examined the molecular biological and physicochemical properties related to anthocyanin biosynthesis in the tassel and silks of Gwangpyeongok and Dacheongok cultivars. Anthocyanins were not synthesized in either the tassel or silks in Gwangpyeongok, whereas were synthesized in both in Dacheongok. The total anthocyanin content was approximately 30 times higher in the tassel and silks of Dacheongok than in those of Gwangpyeongok. In addition, C-3-G was measured only in the tassel of Dacheongok, and C-3-G, Pg-3-G, and M-3-G were 45.2 times, 27.3 times, and 37.6 times higher, respectively, in the silks of Dacheongok than of Gwangpyeongok. Expression of F3'H, DFR, and GST genes decreased in the tassel, and that of F3'H and DFR genes decreased in the silks of Gwangpyeongok. It was further confirmed that transcription factor P1 and R1 regulate the expression of anthocyanin biosynthetic genes in the tassel and silks, respectively, in Gwangpyeongok. Linoleic acid (C18:2) decreased by 6.6% and 10.9%, and linolenic acid (C18:3) increased by 8.5% and 8.5%, in the tassel and silks, respectively, of Gwangpyeongok compared to those of Dacheongok. Palmitic acid (C16:0) increased by 4.1% and oleic acid (C18:1) decreased by 2.1% in the silks of Gwangpyeongok compared to that in Dacheongok. In addition, the total fatty acid content in the tassel and silks increased by 10.3% and 30.4%, respectively, in Gwangpyeongok compared to that in Dacheongok. However, no significant results were observed in the analysis of phytosterol components. These results may be utilized as useful resources for the development of functional corn containing a large amount of anthocyanins.

키워드

과제정보

본 논문은 농촌진흥청 연구사업(세부과제명: 사료용 옥수수 우량계통 육성 및 생산력검정 시험, 세부과제번호: PJ014292012021)의 지원에 의해 이루어진 것임

참고문헌

  1. Duangpapeng, P., K. Lertrat, K. Lomthaisong, M.P. Scott, and K. Suriharn. 2019. Variability in anthocyanins, phenolic compounds and antioxidant capacity in the tassels of collected waxy corn gerplasm. Agronomy 9(3) : 158. https://doi.org/10.3390/agronomy9030158
  2. Halbwirth, H., S. Martens, U. Wienand, G. Forkmann, and K. Stich. 2003. Biochemical formation of anthocyanins in silk tissue of zea mays. Plant Sci. 164(4) : 489-495. https://doi.org/10.1016/S0168-9452(02)00433-8
  3. Kim, H. 2010. Identification of the maize R gene component responsible for the anthocyanin biosynthesis of kernel pericarp. Korean J. Breed. 42(1) : 50-55.
  4. Kim, S. L., J. J. Hwang, J. Song, J. C. Song, K. H. Jung. 2000. Extraction, purification and quantification of anthocyanins in colored rice, black soy bean and black waxy corn. Korean J. Breed. 32 : 146-152.
  5. Kim, S., M. Kim, G. Jung, Y. Lee, B. Son, J. Kim, J. Lee, H. Bae, Y. G., S. Kim, and S. Baek. 2018. Identification and quantification of phytosterols in maize kernel and cob. Korean J. Crop Sci. 63(2) : 131-139. https://doi.org/10.7740/KJCS.2018.63.2.131
  6. Ku, K. M., S. K. Kim, and Y. H. Kang. 2009. Antioxidant activity and functional components of corn silk (Zea mays L.). Korean J. Plant Res. 22(4) : 323-329.
  7. Lee, K. Y., T. H. Kim, S. H. Lim, J. Y. Park, K. H. Kim, M. S. Ahn, and H. Y. Kim. 2016. Proximate, free eugar, fatty acids composition and anthocyanins of Saekso 2 corn kernels. J. Food Hyg. Saf. 31(5) : 335-341. https://doi.org/10.13103/JFHS.2016.31.5.335
  8. Lesnick, M. and V. L. Chandler. 1998. Activation of the Maize Anthocyanin Gene a2 is mediated by an element conserved in many anthocyanin promoters. Plant Physiol. 117 : 437-445. https://doi.org/10.1104/pp.117.2.437
  9. Li, H., H. Flachowsky, T. C. Fischer, M. Hanke, G. Forkmann, D. Treutter, W. Schwab, T. Hoffmann, and I. Szankowski. 2007. Maize Lc transcription factor enhances biosynthesis of anthocyanins, distinct proanthocyanidins and phenylpropanoids in apple (Malus domestica Borkh.). Planta 226(5) : 1243-1254. https://doi.org/10.1007/s00425-007-0573-4
  10. Liu, X., S. Li1, W. Yang, B. Mu, Y. Jiao, X. Zhou, C. Zhang, Y. Fan, and R. Chen. 2018. Synthesis of seed-specific bidirectional promoters for metabolic engineering of anthocyanin-rich maize. Plant Cell physiol. 59(10) : 1942-1955. https://doi.org/10.1093/pcp/pcy110
  11. Moon, H. G., B. Y. Son, S. W. Cha, T. W. Jung, Y. H. Lee, J. H. Seo, H. K. Min, K. J. Choi, C. S. Huh, and S. D. Kim. 2001. A new single cross hybrid for silage "Kwangpyeongok". Korean J. Breed Sci. 33 : 350-351.
  12. Petroni, K., R. Pilu, and C. Tonelli. 2014. Anthocyanins in corn: a wealth of genes for human health. Planta. 240 : 901-911. https://doi.org/10.1007/s00425-014-2131-1
  13. Quattrocchio, F., J. F. Wing, H. T. C. Leppen, J. N. M. Moi, and R. E. Koes. 1993. Regulatory genes controlling anthocyanin pigmentation are functionally conserved among plant species and have distinct sets of target genes. The Plant Cell. 5 : 1497-1512. https://doi.org/10.2307/3869734
  14. Sharma, M., M. Cortes-Cruz, K. R. Ahern, M. McMullen, T. P. Brutnell, and S. Chopra. 2011. Identification of the Pr1 gene product completes the anthocyanin biosynthesis pathway of maize. Genetics 188 : 69-79. https://doi.org/10.1534/genetics.110.126136
  15. Sharma, M., C. Chai, K. Morohashi, E. Grotewold, M. E. Snook, and S. Chopra. 2012. Expression of flavonoid 3'-hydroxylase is controlled by P1, the regulator of 3-deoxyflavonoid biosynthesis in maize. BMC Plant Biology 12 : 196. https://doi.org/10.1186/1471-2229-12-196
  16. Riaz, B., H. Chen, J. Wang, L. Du, K. Wang, and X. Ye. 2019. Overexpression of maize ZmC1 and ZmR transcription factors in wheat regulates anthocyanin biosynthesis in a tissue-specific manner. International Journal of Molecular Sciences. Int. J. Mol. Sci. 20(22) : 1-21.
  17. Sharma, M., C. Chai, K. Morohashi, E. Grotewold, M. E. Snook, and S. Chopra. 2012. Expression of flavonoid 3'-hydroxylase is controlled by P1, the regulator of 3-deoxyflavonoid biosynthesis in maize. BMC Plant Biol. 12 : 196. https://doi.org/10.1186/1471-2229-12-196
  18. Son, B., S. Baek, J. Kim, J. Lee, and H. Bae. 2018. Single cross maize hybrid for silage with lodging tolerance and high yield, 'Dacheongok'. Korean J. Breed. Sci. 50 : 145-149. https://doi.org/10.9787/KJBS.2018.50.2.145
  19. Tian, J., M. Chen, J. Zhang, K. Li, T. Song, X. Zhang, and Y. Tao. 2017. Characteristics of dihydroflavonol 4-reductase gene promoters from different leaf colored Malus crabapple cultivars. Horti. Res. 4(1) : 17070. https://doi.org/10.1038/hortres.2017.70
  20. Upadhyay, S., and M. Dixit. 2015. Role of polyphenols and other phytochemicals on molecular signaling. Oxid. Med. Cell Longev. 10 : 1155-1170.
  21. Welch, C. R., Q. Wu, and J. E. Simon. 2008. Recent advances in anthocyanin analysis and characterization. Curr. Anal. Chem. 4(2) : 75-101. https://doi.org/10.2174/157341108784587795
  22. Zhang, X., N. Su, L. Jia, J. Tian, H. Li, L. Huamg, Z. Shen, and J. Cui. 2018. Transcriptome analysis of radish sprouts hypocotyls reveals the regulatory role of hydrogen-rich water in anthocyanin biosynthesis under UV-A. BMC Plant Biology 18 : 227. https://doi.org/10.1186/s12870-018-1449-4
  23. Zuk, M., M. Dzialo, D. Richter, L. Dyminska, J. Matula, A. Kotecki, J. Hanuza, and J. Szopa. 2016. Chalcone synthase (CHS) gene suppression in flax leads to changes in wall synthesis and sensing genes, cell wall chemistry and stem morphology parameters. Front. Plant Sci. 24(7) : 894.