DOI QR코드

DOI QR Code

충북지역 중북부 중산간지 벼 출수생태형별 적응성 검토

Studies on Adaptability by Rice Heading Ecology Type in the Central Northern Mid-Mountainous Cultivation Zone of Chungbuk Region

  • 투고 : 2021.04.05
  • 심사 : 2021.07.19
  • 발행 : 2021.09.01

초록

최근 지구온난화에 의해 기온이 상승하여 조생종을 주로 재배하는 중북부중산간지대에 중생종과 중만생종의 적응성을 검토하기 위해서 출수생태형별로 이앙시기를 달리해서 조생종 오대, 중생종 청품, 중만생종 삼광을 제천의 농가포장에서 시험한 결과는 다음과 같다. 1. 벼 생육에 영향을 미치는 기상요소 중 평균기온은 2010년대에 8월까지는 가장 높았고, 다른 시기보다 월별로 0.7~0.9℃가 높았으며, 일조시간은 장마, 태풍 등으로 인한 기상이변으로 가장 낮은 수준이었다. 2. 지난 35년간 오대의 지역적응시험 결과 출수기는 점점 빨라지고 있으며, 이앙부터 출수기까지 재배일수가 짧아져 간장과 수수가 감소되었다. 과거보다 등숙률은 최대 10%, 천립중은 2 g 이상 증가되었으나, 품질과 직결되는 출수 후 40일간 평균기온은 많게는 2℃ 이상 증가되었다. 3. 제천지역 안전출수한계기는 출수 후 40일간 적산온도 880℃ 기준으로는 8월 11일, 840℃ 기준으로는 8월 15일로 분석되었다. 4. 이앙시기별 출수생태형에 따라 생육은 비슷하였으나 이앙시기별 최고, 최저 수준을 비교한 등숙률은 조생종 6.5%, 중생종 3.7%, 중만생종 2.5% 높았다. 쌀수량은 조생종 83 kg, 중생종 113 kg, 중만생종 47 kg 많았으며, 완전미율은 조생종 17.8%, 중생종 3.2%, 중만생종 5.0% 높았다. 5. 중북부중산간지에서 안전출수한계기 및 완전미수량을 고려한 이앙시기는 조생종은 6월 15일, 중생종은 6월 5일, 중만생종은 5월 25일이었으며, 본 시험 지역(IV-1)에서도 온난화로 인해 중생종과 중만생종이 안정적으로 재배될 수 있을 것으로 예상된다.

In recent years, air temperature has been increasing rapidly compared to the 1980s because of global warming. This increase in temperature reduces the yield and quality of rice; therefore, measures are needed to prevent such effects and ensure food security. The early maturing type (EMT) of rice is mainly cultivated in the central northern mid-mountainous area (CNMA). This study was conducted to shift the transplanting date of EMT and to examine the adaptability of the mid-maturing type (MMT) or mid-late maturing type (MLMT) in the Jecheon region of the CNMA to address global warming. The air temperature increased by 0.7-0.9℃ in the 2010s, compared to that in the 1980s, and was similar to other decades during the ripening period. Over the past 35 years, considering rice quality, the heading date of the Odae variety has arrived sooner by approximately 10 days, the ripened grain ratio has increased by more than 10%, and the thousand grain weight; however, the mean temperature at 40 days after heading has increased by more than 2℃. The late marginal heading date in the Jecheon region was determined as August 11 based on the accumulated temperature of 880℃ and August 15 based on 840℃ for 40 days after heading. According to different transplanting dates, milled rice yield per 10 a was the highest at 567 kg with June 10 in EMT, 595 kg with June 10 in MMT, and 572 kg with May 30 in MLMT. Considering the late marginal heading date, rice yield, and quality, the optimum transplanting date was June 15 in EMT, June 5 in MMT, and May 30 in MLMT in the Jecheon region of CNMA. Owing to global warming, MMT and MLMT are expected to be reliably cultivated in the CNMA.

키워드

과제정보

본 논문은 농촌진흥청 신농업기후변화대응체계구축사업(세부과제명 : 충북지역 벼 재배지대별 출수생태형과 이앙시기에 따른 수량성 및 품질 변동 연구, 세부과제번호 : PJ01508306)의 연구비 지원에 의해 이루어진 것임.

참고문헌

  1. Ahn, J. B., Y. H. Kim, K. M. Shim, M. S. Suh, D. H. Cha, D. K. Lee, S. Y. Hong, S. K. Min, S. C. Park, and H. S. Kang. 2020. Climatic yield potential of japonica type rice in the Korean peninsula under RCP scenarios using the ensemble of multiGCM and multi-RCM chains. Int. J. Climatol. 41(Suppl. 1) : E1287-E1302.
  2. Chen, S., X. Zhang, X. Zhaooom, D. Wang, C. Xu, C. Ji, and X. Zhang. 2013. Response of rice nitrogen physiology to high nighttime temperature during vegetative stage. Scientific World J. 2013(649326) : 1-10.
  3. Choi, D. H., Y. S. Jung, B. C. Kim, and M. S. Kim. 1985. Zoning of agroclimatic regions based on climatic characteristics during the rice planting period. Korean J. Crop Sci. 30(3) : 229-235.
  4. Choi, K. J., T. S. Park, C. K. Lee, J. T. Kim, J. H. Kim, K. Y. Ha, W. H. Yang, C. K. Lee, K. S. Kwak, H. K. Park, J. K. Nam, J. I. Kim, G. J. Han, Y. S. Cho, Y. H. Park, S. W. Han, J. R. Kim, S. Y. Lee, H. G. Choi, S. H. Cho, H. G. Park, D. J. Ahn, W. K. Joung, S. I. Han, S. Y. Kim, K. C. Jang, H. Oh, W. D. Seo, J. E. Ra, J. Y. Kim, and H. W. Kang. 2011. Effect of temperature during grain filling stage on grain quality and taste of cooked rice in mid-late maturing rice varieties. Korean J. Crop Sci. 56(4) : 404-412. https://doi.org/10.7740/kjcs.2011.56.4.404
  5. Choi, W. Y., J. K. Nam, S. S. Kim, J. H. Lee, J. H. Kim, H. K. Park, N. H. Back, M. G. Choi, C. K. Kim, and K. Y. Jung. 2005. Optimum transplanting date for production quality rice in Honam plain area. Korean J. Crop Sci. 50(6) : 435-441.
  6. Hakata, M., M. Kuroda, T. Miyashita, T. Yamaguchi, M. Kojima, H. Sakakibara, T. Mitsui, and H. Yamakawa. 2012. Suppression of α-amylase genes improves quality of rice grain ripened under high temperature. Plant Biotech. J. 10 : 1110-1117. https://doi.org/10.1111/j.1467-7652.2012.00741.x
  7. Hanyu, J., T. Uchijima, and S. Sugawara. 1966. Studies on the agro-climatological method for expressing the paddy rice products. I. an agro-climatic index for expressing the quantity of ripening of the paddy rice. Bulletin of Tohoku National Agricultural Experimental Station 34 : 27-36.
  8. Horie, T. 1993. Predicting the effects of climatic variation and elevated CO2 on rice yield in Japan. J Agr. Met. 48(5) : 567-574. https://doi.org/10.2480/agrmet.48.567
  9. Horie, T. 2019. Global warming and rice production in Asia : Modeling, impact prediction and adaptation. Proc. Jpn. Acad., Ser. B 95(6) : 211-245. https://doi.org/10.2183/pjab.95.016
  10. Hosoya, K. 2013. Analysis on the occurrence of chalky rice grain taking into consideration all of the grains within a panicle. J. Deveolp. Sustainable Agric. 8 : 127-131.
  11. Ishigooka, Y., S. Fukui, T. Hasegawa, T. Kuwagata, M. Nishimori, and M. Kondo. 2017. Large-scale evaluation of the effects of adaptation to climate change by shifting transplanting date on rice production and quality in Japan. J. Agric. Meteorol. 73(4) : 156-173. https://doi.org/10.2480/agrmet.D-16-00024
  12. Ishigooka, Y., T. Kuwagata, M. Nishimori, T. Hasegawa, and H. Ohno. 2011. Spatial characterization of recent hot summers in Japan with agro-climatic indices related to rice production. J Agric. Meteorol. 67(4) : 209-224. https://doi.org/10.2480/agrmet.67.4.5
  13. Ito, S., T. Hara, Y. Kawanami, T. Watanabe, K. Thiraporn, N. Ohtake, K. Sueyoshi, T. Mitsui, T. Fukuyama, Y. Takahashi, T. Sato, A. Sato, and T. Ohyama. 2009. J. Agronomy and Crop Sci. (published online).
  14. Jing, L., C. Chen, S. Hu, S. Dong, Y. Pan, Y. Wang, S. Lai, Y. Wang, and L. Yang. 2021. Effects of elevated atmosphere CO2 and temperature on the morphology, structure and thermal properties of starch granules nd their relationship to cooked rice quality. Food Hydrocolloids 112(106360) : 1-12.
  15. Jung, M. P., K. M. Shim, Y. S. Kim, S. C. Kim, and K. H. So. 2014. Changing trends of climatic variables of agro-climatic zones of rice in South Korea. Climate Change Res. 5(1) : 13-19.
  16. Kang, J. R., J. T. Kim, I. Y. Beg, and J. I. Kim. 2005. Effect of transplanting times on rice quality in mid-mountainous area. Korean J. Crop Sci. 50(S) : 33-36.
  17. Ko, J. K., K. S. Lee, H. T. Shin, and J. S. Shim. 1998. Characteristics of grain quality at different transplanting times among rice cultivars : II. Variation of some grain appearance and chemical components. Korean J. Plant Res. 11(1) : 4-69.
  18. Lee, C. K., J. H. Kim, J. Y. Shon, W. H. Yang, Y. H. Yoon, K. J. Choi, and K. S. Kim. 2012. Impacts of climate change on rice production and adaptation method in Korea as evaluated by simulation study. Korean J. Agric. Meteorol. 14(4) : 207-221. https://doi.org/10.5532/KJAFM.2012.14.4.207
  19. Lee, C. K., K. S. Kwak, J. H. Kim, J. Y. Son, and W. H. Yang. 2011. Impacts of climate change and follow-up cropping season shift on growing period and temperature in different rice maturity types. Korean J. Crop Sci. 56(3) : 233-243. https://doi.org/10.7740/kjcs.2011.56.3.233
  20. Lee, J. Y. 1976. The effect of the photosynthetic ability and the nutritional status on dry matter production and yield components of the rice plant at the latter half of the growth stage. Korean J. Crop Sci. 21(2) : 187-202.
  21. Lee, S. Y. 1995. Relationship among photosynthesis, grain filling and temperature of rice cultivars by shifted of heading date. Korean J. Crop Sci. 40(3) : 398-405.
  22. Lobell, D. B. and S. M. Gourdji. 2012. The influence of climate change on global crop productivity. Plant Physiol. 160 : 1686-1697. https://doi.org/10.1104/pp.112.208298
  23. Lobell, D. B., W. Schlenker, and J. Costa-Roberts. 2011. Climate trends and global crop production since 1980. Science 333 : 616-620. https://doi.org/10.1126/science.1204531
  24. Masutomi, Y., M. Arakawa, T. Minoda, and T. Yonekura. 2015. Critical air temperature and sensitivity of the incidence of chalky rice kernels for the rice cultivar "Sai-no-kagayaki". Agric. Forest Meteorol. 203 : 11-16. https://doi.org/10.1016/j.agrformet.2014.11.016
  25. Masutomi, Y., T. Takimoto, M. Shimamura, T. Manabe, M. Arakawa, N. Shibota, A. Ooto, S. Azuma, Y. Imai, and M. Tamura. 2019. Rice grain quality degradation and economic loss due to global warming in Japan. Environ. Res. Commun. 1(121003) : 1-12.
  26. Matsui, T., K. Omasa, and T. Horie. 1997. High temperature-induced spikelet sterility of japonica rice at flowering in relation to air temperature, humidity and wind velocity conditions. Jpn. J. Crop Sci. 66(3) : 449-455. https://doi.org/10.1626/jcs.66.449
  27. Mitsui T., H. Yamakawa, and T. Kobata. 2016. Molecular physiological aspects of chalking mechanism in rice grains under high-temperature stress. Plant Prod. Sci. 19(1) : 22-29. https://doi.org/10.1080/1343943X.2015.1128112
  28. Morita, S., H. Wada, and Y. Matsue. 2016. Countermeasures for heat damage in rice grain quality under climate change. Plant Prod. Sci. 19(1) : 1-11. https://doi.org/10.1080/1343943X.2015.1128114
  29. Murakami, T. 1973. Paddy rice ripening and temperature. JARQ 7(1) : 1-5.
  30. National Aeronautics and Space Administration (NASA). 2021. Global warming from 1880 to 2020. https://climate.nasa.gov (Accessed Mar. 29, 2021).
  31. Peng, S., J. Huang, J. E. Sheedy, R. C. Laza, R. M. Visperas, X. Zhong, G. S. Centeno, G. S. Khush, and K. G. Cassman. 2004. Rice yields decline with higher night temperature from global warming. Proc. Natl. Acad. Sci. USA 101(27) : 9971-9975. https://doi.org/10.1073/pnas.0403720101
  32. Reddy, A. R., G. K. Rasineni, and A. S. Raghavendra. 2010. The impact of global elevated CO2 concentration on photosynthesis and plant productivity. Curr. Sci. 99(1) : 46-57.
  33. Rural Development Administration (RDA). 1986. The characteristics of agricultural climate and countermeasures on rice meteorological disaster in Korea. Suwon, Korea. p. 194.
  34. Sang, W. G., H. S. Cho, J. H. Kim, P. Shin, J. K. Baek, Y. H. Lee, J. I. Cho, and M. C. Seo. 2018. Korean J. Agric. Forest Meteorol. 20(4) : 296-304. https://doi.org/10.5532/KJAFM.2018.20.4.296
  35. Seo, M. C., J. H. Kim, K. J. Choi, Y. H. Lee, W. G. Sang, H. S. Cho, J. I. Cho, P. Shin, and J. K. Baek. 2020. Review on adaptability of rice varieties and cultivation technology according to climate change in Korea. Korean J. Crop Sci. 65(4) : 327-338. https://doi.org/10.7740/KJCS.2020.65.4.327
  36. Shim, K. M., K. A. Roh, K. H. So, G. Y. Kim, H. C. Jeong, and D. B. Lee. 2010. Assessing impacts of global warming on rice growth and production in Korea. Climate Change Res. 1(2) : 121-131.
  37. Shim, K. M., Y. S. Kim, M. P. Jung, and I. T. Choi. 2014. Change of climatic productivity index for rice under recent climate change in Korea. Korean J. Agric. Forest Meteorol. 16(4) : 384-388. https://doi.org/10.5532/KJAFM.2014.16.4.384
  38. Shimizu, H., H. Ohta, K. Miura, K. Fukui, and A. Kobayashi. 1994. Infulence of heading date on eating quality, protein content and amylose content in rice. The Hokuriku Crop Sci. 29 : 37-39.
  39. Shin, J. H., C. M. Han, J. B. Kwon, J. S. Kim, and S. K. Kim. 2020. Effect of climate on the yield of 'Ilpum' rice cultivar in Gyeongbuk province, South Korea over the past 25 years. Korean J. Crop Sci. 65(4) : 264-273. https://doi.org/10.7740/KJCS.2020.65.4.264
  40. Yamakawa, H. 2011. Omics-based approach for cereal starch biosynthesis: Toward a determination of key factors for quality of rice grain affected by high temperature. J Appl. Glycosci. 58 : 35-38. https://doi.org/10.5458/jag.jag.JAG-2010_019
  41. Yang, W. H., S. G. Kang, J. S. Choi, J. H. Park, and S. J. Kim. 2020. Optimum grain filling temperature for yield improvement of rice varieties originated from high-altitude area. Korean J. Crop Si. 65(3) : 182-191.
  42. Yoshimoto, M., M. Fukuoka, T. Hasegawa, M. Utsumi, Y. Ishigooka, and T. Kuwagata. 2011. Integrated micrometeorology model for panicle and canopy temperature (IM2PACT) for rice heat stress studies under climate change. J Agric. Meteorol. 67(4) : 233-247. https://doi.org/10.2480/agrmet.67.4.8