DOI QR코드

DOI QR Code

Effect Analysis of Pulley on Performance of Micro Hydropower in Free Surface Vortex

자유수면 와류에서 마이크로 소수력의 성능에 풀리가 미치는 영향 분석

  • Choi, In-Ho (Department of Civil Engineering, Seoil University) ;
  • Kim, Jong-Woo (Department of Civil Engineering, Seoil University) ;
  • Chung, Gi-Soo (Korea Institute of Industrial Technology(KITECH)/Hanjung Energy Networks Co., Ltd.)
  • 최인호 (서일대학교 토목공학과) ;
  • 김종우 (서일대학교 토목공학과) ;
  • 정기수 (한국생산기술연구원/(주)한중에너지네트웍스)
  • Received : 2021.07.06
  • Accepted : 2021.07.22
  • Published : 2021.08.31

Abstract

This paper contributes to the understanding of the effect of pulley on the performance of the vortex turbine in free water surface. The experimental work was to analyze the rotation, voltage and current of the turbine due to physical factors (vortex height, velocity, effective head, etc.) at flow rates ranging from 0.0069 to 0.0077 m3/s in the inlet channel. As a result, the experimental values showed that voltage, current and rotational speed of the vortex turbine decreased with increasing the pulley ratio regardless of the blade type. The efficiency of straight blade and twisted blade was 52 % at the gear ratio of 0.45, whereas the efficiency of small twisted blade was 54 % at the pulley ratio of 0.21. The highest amount of the energy generated by the water free vortex turbine occurred within a pulley ratio of 0.5. The efficiency of this vortex turbine was observed at 0.2 ~ 58 % depending on the pulley ratio.

본 논문은 자유수면을 갖는 와류수차의 성능에 풀리의 영향을 이해하는 것이다. 실험은 개수로 유입구 유량 0.0069 ~ 0.0077 m3/s 범위에서 물리적 인자(와류높이, 유속, 유효낙차 등)에 따른 수차의 회전수, 전압 및 전류를 측정해 분석하였다. 실험결과에 따르면 와류수차의 전압, 전류 및 회전수는 블레이드 형태와 상관없이 풀리비가 증가할 경우 감소하였다. 직선형 블레이드와 비틀린 블레이드의 효율은 풀리비 0.45 지점에서 52 %인 반면 소형 비틀린 블레이드의 효율은 풀리비 0.21 지점에서 54 %이다. 와류수차의 최대 발전량은 풀리비 0.5 지점 내에서 발생했다. 와류수차의 효율은 풀리비에 따라 0.2 ~ 58 % 범위에서 관찰되었다.

Keywords

Acknowledgement

이 논문은 2021년 서일대학교 학술연구비 지원에 의하여 연구함.

References

  1. Choi, IH, Kim, JW and Chung, GS (2020). Experimental Study of Micro Hydropower with Vortex Generation at Lower Head Water. J. of Wetlands Research Vol. 22. No. 2. pp. 121-129. https://doi.org/10.17663/JWR.2020.22.2.121
  2. Gheorghe-Marius, M and Tudor, S (2013). Energy capture in the gravitational vortex water flow. J. of Marine Technology & Environment vol 1. http://worldcat.org/issn/18446116
  3. Mulligan, S, Casserly, J and Sherlock, R (2016). Experimental and numerical modelling of free-surface turbulent flows in full air-core water vortices. In Advances in Hydroinformatics; Springer: Berlin/Heidelberg, Germany, pp. 549-569.
  4. Muller, S, Cleynen, O, Hoerner, S, Lichtenberg, N and Thevenin, D (2018). Numerical analysis of the compromise between power output and fish-friendliness in a vortex power plant. J. Ecohydraulics, 3, 86-98. https://doi.org/10.1080/24705357.2018.1521709
  5. Nicolet, C, Zobeiri, A, Maruzewski, P and Avellan, F (2011). Experimental investigations on upper part load vortex rope pressure fluctuations in francis turbine draft tube. International Journal of Fluid Machinery and Systems, vol. 4, no. 1, pp. 179-190. https://doi.org/10.5293/IJFMS.2011.4.1.179
  6. Nishi, Y and Inagaki, T (2017). Performance and flow field of a gravitation vortex type water turbine. Int. J. Rotating Mach. 2017, Article ID 2610508, pp. 1-11. https://doi. org/10.1155/2017/2610508
  7. Odgaard, AJ (1986). Free-surface air core vortex. J. of Hydraulic Engineering, vol. 112, no. 7, pp. 610-620. https://doi.org/10.1061/(ASCE)0733-9429(1986)112:7(610)
  8. Powalla, D, Hoerner, S, Cleynen, O, Muller, N, Stamm, J and Thevenin, D (2021). A Computational Fluid Dynamics Model for a Water Vortex Power Plant as Platform for Etho- and Ecohydraulic Research. Energies, 14, 639. https://doi.org/10.3390/en14030639
  9. Power, C, McNabola, M and Coughlan, P (2016). A parametric experimental investigation of the operating conditions of gravitational vortex hydropower(GVHP). J. of Clean Energy Technologies, vol.4, no.2, pp. 112-119. DOI: 10.7763/JOCET.2016.V4.263
  10. Shabara, HM, Yaakob, OB, Ahmed, YM and Elbatran, AH (2015). CFD Simulation of Water Gravitation Vortex Pool Flow for Mini Hydropower Plants. J. Teknologi 74(5), pp. 77-81. https://doi.org/10.11113/jt.v74.4645
  11. Vu, T, Koller, M, Gauthier, M and Deschenes, C (2011). Flow simulation and efficiency hill chart prediction for a Propeller turbine. International Journal of Fluid Machinery and Systems, vol. 4, no. 2, pp. 243-254. DOI: 10.1088/1755- 1315/12/1/012040
  12. Wanchat, S and Suntivarakorn, R (2012). Preliminary Design of a Vortex Pool for Electrical Generation. J. of Computational and Theoretical Nanoscience, vol. 13, no. 1, pp. 173-177. DOI: 10.1166/asl.2012.3855
  13. Wagner, F, Warth, P, Royan, M, Lindig, A, Muller, N and Stamm, J (2019). Laboruntersuchungen zum Fischabstieg uber ein Wasserwirbelkraftwerk. Wasserwirtschaft, 109, 64-67
  14. Wardhana, EM, Santoso, A and Ramdani, AR (2019). Analysis of Gottingen 428 Airfoil Turbine Propeller Design with Computational Fluid Dynamics Method on Gravitational Water Vortex Power Plant. International J. of Marine Engineering Innovation and Research, Vol. 3(3), Mar. 2019. 69-77. DOI: 10.12962/j25481479.v3i3.4864
  15. Zotloeterer, F (2004). Hydroelectric power plant. Patent WO 2004/061295A3,2004