DOI QR코드

DOI QR Code

철근 부식을 고려한 교량의 지진취약도 평가

Seismic Fragility Evaluation of Bridges Considering Rebar Corrosion

  • 신수봉 (인하대학교 사회인프라공학과) ;
  • 꽁씨나 (강원대학교 건축.토목.환경공학부) ;
  • 문지호 (강원대학교 건축.토목.환경공학부) ;
  • 송종걸 (강원대학교 건축.토목.환경공학부)
  • Shin, Soobong (Department of Civil Engineering, Inha University) ;
  • Kong, Sina (Department of Civil Engineering, Kangwon National University) ;
  • Moon, Jiho (Department of Civil Engineering, Kangwon National University) ;
  • Song, Jong-Keol (Department of Civil Engineering, Kangwon National University)
  • 투고 : 2021.06.29
  • 심사 : 2021.07.13
  • 발행 : 2021.08.31

초록

교량의 노후화는 다양한 원인에 기인하겠지만 겨울철에 제설용으로 살포하는 염화칼슘이 교량부재에 침투하여 부식을 유발하는 것이 대표적인 교량 노후화 원인중 하나라고 할 수 있다. 본 연구의 목적은 교량의 부식에 의한 노후화 정도를 정량화하고 이를 교량의 해석모델에 적용하여 노후화 정도에 따른 지진취약도 해석을 수행하고 노후화 정도와 지진취약도 곡선의 관계를 평가하는 것이다. 노후화 정도를 고려한 지진취약도 해석에 각 손상상태별로 한계값을 적절히 정의하는 것이 중요하다. 본 연구에서는 손상정도에 따른 변위 연성도 능력의 저하 특성에 관한 기존 연구결과를 활용하여 손상상태를 정의하였다. 세 가지 교량받침과 두 가지 교각 높이에 따른 예제 교량들의 지진취약도 해석으로부터 노후화 정도가 증가할수록 지진취약도가 증가하는 경향이 나타냄을 알 수 있다. 이러한 노후화 정도에 따른 지진취약도의 차이는 손상상태가 경미, 보통, 심각, 붕괴의 상태로 갈수록 증가하는 경향을 나타낸다.

Although the deterioration of bridges may occur due to various causes, one of the representative causes is that the chloride used for deicing in the winter penetrates bridge members and results in corrosion. This study aims to quantify the ageing degree resulting from the corrosion of a bridge, apply it to the inelastic dynamic analysis model of the bridge, perform a seismic fragility analysis, and evaluate the relationship between the ageing degree and the seismic fragility curve. It is important to appropriately define the threshold values for each damage state in seismic fragility analyses considering the ageing degree. The damage state was defined using the results of existing experimental studies on the characteristics of the deterioration in the displacement ductility capacity of the pier, according to the ageing degree. Based on the seismic fragility analyses of six types of bridges divided by three types of bearing devices and two pier heights, it was found that the seismic vulnerability tends to increase with the ageing degree. The difference in seismic vulnerability with respect to the ageing degree exhibits a tendency to increase as the damage state progresses from slight to moderate, severe, and collapse.

키워드

과제정보

본 연구는 국토교통부 건설기술연구사업의 연구비지원(21SCIP-B146946-04)에 의해 수행되었습니다.

참고문헌

  1. Akgul, F., Frangopol, D.M. (2004) Lifetime Performance Analysis of Existing Prestressed Concrete Bridge Superstructures, J. Struct. Eng., 130(12), pp.1889~1903. https://doi.org/10.1061/(asce)0733-9445(2004)130:12(1889)
  2. Andisheh, K., Scott, A., Palermo, A. (2016) Seismic Behavior of Corroded RC Bridges: Review and Research Gaps, Int. J. Corros., Volume 2016, Article ID 3075184.
  3. Applied Technology Council (1997) NEHRP Guidelines for the Seismic Rehabilitation of Building (FEMA 273), and NEHRP Commentary on the Guidelines for the Seismic Rehabilitation of Buildings (FEMA 274), ATC 33.
  4. Cho, S.H., Chung, L., Roh, Y.S. (2005) Estimation of Rebar Corrosion Rate in Reinforced Concrete Structure, Corros. Rev., 23(4-6), pp.329~353. https://doi.org/10.1515/corrrev.2005.23.4-5-6.329
  5. Choe, D.E., Gardoni, P., Rosowsky, D., Haukaas, T. (2009) Seismic Fragility Estimates for Reinforced Concrete Bridges Subject to Corrosion, Struct. Saf., 31(4), pp.275~283. https://doi.org/10.1016/j.strusafe.2008.10.001
  6. Cornell, C.A., Jalayer, F., Hamburger, R.O., Foutch, D.A. (2002) Probabilistic Basis for 2000 SAC Federal Emergency Management Agency Steel Moment Frame Guidelines, J. Struct. Eng., 128(4), pp.526~533. https://doi.org/10.1061/(asce)0733-9445(2002)128:4(526)
  7. Dutta, A. (1999) On Energy-based Seismic Analysis and Design of Highway Bridges, Ph.D. Dissertation, Science and Engineering Library, State University of New York at Buffalo.
  8. Enright, M.P., Frangopol, D.M. (1998) Probabilistic Analysis of Resistance Degradation of Reinforced Concrete Bridge Beams under Corrosion, Eng. Struct., 20(11), pp.960~971. https://doi.org/10.1016/S0141-0296(97)00190-9
  9. Ghosh, J., Padgett, J.E. (2010) Aging Considerations in the Development of Time Dependent Seismic Fragility Curves, J. Struct. Eng., 136(12), pp.1497~1511. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000260
  10. Ghosh, J., Padgett, J.E. (2012) Impact of Multiple Component Deterioration and Exposure Conditions on Seismic Vulnerability of Concrete Bridges, Earthq. & Struct., 3(5), pp.649~673. https://doi.org/10.12989/eas.2012.3.5.649
  11. Jeong, Y.H., Song, J.K., Shin, S.B. (2019) Evaluation of Seismic Response Considering the Ageing Effect of Rubber and Lead-Rubber Bearings Applied to PSC Box Bridge, EESK J.Earthq. Eng., 23, pp.311~319.
  12. Ma, Y., Che, Y., Gong, J. (2012) Behavior of Corrosion Damaged Circular Reinforced Concrete Columns under Cyclic Loading, Constr. & Build. Mater., 29, pp.548~556. https://doi.org/10.1016/j.conbuildmat.2011.11.002
  13. Mazzoni, S., McKenna, F., Scott, M.H., Fenves, G.L. (2007) OpenSees: Open System of Earthquake Engineering Simulation, Pacific Earthquake Engineering Center, Univ. of Calif., Berkeley, (http://opensees. berkeley. edu (accessed May 24, 2021)).
  14. Moschonas, I.F., Kappos, A.J., Panetsos, P., Papadopoulos, V., Makarios, T., Thanopoulos, P. (2009) Seismic Fragility Curves for Greek Bridges: Methodology and Case Studies, Bull Earthq. Eng., 7, pp.439~468. https://doi.org/10.1007/s10518-008-9077-2
  15. Nielson, B.G., DesRoches, R. (2007) Seismic Fragility Methodology for Highway Bridges using a Component Level Approach, Earthq. Eng. & Struct. Dyn., 36(6), pp.823~839. https://doi.org/10.1002/eqe.655
  16. Shin, S.B., Hong, J.Y., Moon, J.H., Song, J.K. (2020) Seismic Response Evaluation of Composite Steel-Concrete Box Girder Bridge according to Aging Effect of Piers, J. Comput. Struct. Eng. Inst. Korea, 33(5), pp.319~329. https://doi.org/10.7734/COSEIK.2020.33.5.319
  17. Shinozuka, M., Feng, M.Q., Lee, J., Naganuma, T. (2000) Statistical analysis of fragility curves, Journal of Engineering Mechanics, 126(12), pp.1224~1231. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:12(1224)
  18. Simon, J., Bracci, J.M., Gardoni, P. (2010) Seismic Response and Fragility of Deteriorated Reinforced Concrete Bridges, J. Struct. Eng., 136(10), pp.1273~1281. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000220