DOI QR코드

DOI QR Code

Induced Charge Distribution Using Accelerated Uzawa Method

가속 Uzawa 방법을 이용한 유도전하계산법

  • Kim, Jae-Hyun (DIT Center, Samsung Electronics) ;
  • Jo, Gwanghyun (Department of Mathematics, Kunsan National University) ;
  • Ha, Youn Doh (Department of Naval Architecture and Ocean Engineering, Kunsan National University)
  • Received : 2021.05.28
  • Accepted : 2021.07.13
  • Published : 2021.08.31

Abstract

To calculate the induced charge of atoms in molecular dynamics, linear equations for the induced charges need to be solved. As induced charges are determined at each time step, the process involves considerable computational costs. Hence, an efficient method for calculating the induced charge distribution is required when analyzing large systems. This paper introduces the Uzawa method for solving saddle point problems, which occur in linear systems, for the solution of the Lagrange equation with constraints. We apply the accelerated Uzawa algorithm, which reduces computational costs noticeably using the Schur complement and preconditioned conjugate gradient methods, in order to overcome the drawback of the Uzawa parameter, which affects the convergence speed, and increase the efficiency of the matrix operation. Numerical models of molecular dynamics in which two gold nanoparticles are placed under external electric fields reveal that the proposed method provides improved results in terms of both convergence and efficiency. The computational cost was reduced by approximately 1/10 compared to that for the Gaussian elimination method, and fast convergence of the conjugate gradient, as compared to the basic Uzawa method, was verified.

분자동역학에서의 원자들의 유도전하를 계산하기 위해서는 유도전하를 미지수로 하는 선형방정식을 풀어야 하는데 원자들의 위치가 변화할 때마다 필요한 계산이므로 상당한 계산비용이 요구된다. 따라서 효율적인 유도전하 계산 방법은 다양한 시스템을 해석하기 위해서 필수적이다. 본 연구에서는 constraints가 존재하는 Lagrange 방정식의 해에 대한 선형 시스템, 즉 saddle point를 가지는 문제를 해결하기 위해서 Uzawa method를 도입하였다. Uzawa 매개변수가 수렴 속도에 영향을 미치는 단점을 극복하고 행렬 연산의 효율성을 위해서 Schur complement와 preconditioned conjugate gradient (PCG) 방법을 통해 계산의 효율성을 극대화하는 가속 Uzawa algorithm을 적용한다. 두 금속 나노입자가 전기장에 놓여진 분자동역학 수치모델을 통해서 제시된 방법이 유도전하계산의 수렴성, 효율성 측면에서 모두 향상된 결과를 도출함을 확인하였다. 특히 기존의 가우스 소거법에 의한 계산보다 약 1/10으로 계산비용이 절감되었고, 기본 Uzawa method에 비하여 conjugate gradient (CG)의 높은 수렴성이 입증되었다.

Keywords

Acknowledgement

본 연구는 정부(교육부) 재원으로 한국연구재단이 주관하는 기본연구지원사업(No. 2021R1F1A104563511)의 지원을 통해 수행되었습니다.

References

  1. Barsotti Jr, R.J., Vahey, M.D., Wartena, R., Chiang, Y.M., Voldman, J., Stellacci, F. (2007) Assembly of Metal NanoParticles into Nanogaps, Small, 3(3), pp.488~499. https://doi.org/10.1002/smll.200600334
  2. Ben, X., P ark, H.S. (2014) Atomistic Simulations of Electric Field Effects on the Young's Modulus of Metal Nanowires, Nanotechnol, 25(45), p.455704. https://doi.org/10.1088/0957-4484/25/45/455704
  3. Benzi, M., Golub, G.H., Liesen, J. (2005) Numerical Solution of Saddle Point Problems, Acta Numer., pp.1~137.
  4. Cha, S.H., Kang, S.H., Lee, Y.J., Kim, J.H., Ahn, E.Y., Park, Y., Cho, S. (2019) Fabrication of Nanoribbons by Dielectrophoresis Assisted Cold Welding of Gold Nanoparticles on Mica Substrate, Sci. Rep., 9(1), pp.1~12. https://doi.org/10.1038/s41598-018-37186-2
  5. Djurabekova, F., P arviainen, S., P ohjonen, A., Nordlund, K. (2011) Atomistic Modeling of Metal Surfaces under Electric Fields: Direct Coupling of Electric Fields to a Molecular Dynamics Algorithm, Phys. Rev. E., 83(2), p.026704. https://doi.org/10.1103/PhysRevE.83.026704
  6. Golub, G.H., Van Loan, C.F. (2013) Matrix Computations (Vol. 3), JHU Press.
  7. Han, S., Ihm, J. (2000) Role of the Localized States in Field Emission of Carbon Nanotubes, Phys. Rev. B, 61(15), p.9986. https://doi.org/10.1103/physrevb.61.9986
  8. Jackson, J.D. (1999) Classical Electrodynamics, Am. J. Phys., 67(9), pp.841~842. https://doi.org/10.1119/1.19136
  9. Kim, C., Kim, B., Lee, S.M., Jo, C., Lee, Y.H. (2002) Electronic Structures of Capped Carbon Nanotubes under Electric Fields, Phys. Rev. B, 65(16), p.165418. https://doi.org/10.1103/physrevb.65.165418
  10. Kim, J.H., Cha, S.H., Kang, S.H., Park, Y., Cho, S. (2020) Atomistic Simulation of Agglomeration of Metal Nanoparticles Considering the Induced Charge Density of Surface Atoms, Int. J. Mech. & Mater. Des., 16(3), pp.475~486. https://doi.org/10.1007/s10999-020-09489-8
  11. Marx, D., Hutter, J. (2000) Ab Initio Molecular Dynamics: Theory and Implementation, Mod. Methods & Algorithms Quantum Chem., 1(301-449), p.141.
  12. Mayer, A. (2005) Polarization of Metallic Carbon Nanotubes from a Model that Includes both Net Charges and Dipoles, Phys. Rev. B, 71(23), p.235333. https://doi.org/10.1103/physrevb.71.235333
  13. Pethig, R. (2016) Where is Dielectrophoresis (DEP) going?, J. Electrochem. Soc., 164(5), B3049. https://doi.org/10.1149/2.0071705jes
  14. Ranjan, N., Vinzelberg, H., Mertig, M. (2006) Growing One-Dimensional Metallic Nanowires by Dielectrophoresis, Small, 2(12), pp.1490~1496. https://doi.org/10.1002/smll.200600350