DOI QR코드

DOI QR Code

Morphology and Mitochondrial Genome of Fischoederius sp. 1 in Thailand

  • Watthanasiri, Pichanee (Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University) ;
  • Geadkaew-Krenc, Amornrat (Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University) ;
  • Grams, Rudi (Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University)
  • Received : 2021.05.04
  • Accepted : 2021.07.20
  • Published : 2021.08.31

Abstract

A rumen fluke Fischoederius elongatus is assigned to the type species of genus Fischoederius, family Gastrothylacidae. However, the mitochondrial sequences recently published are thought to be of inconsistent species, suggesting that several morphologically similar but genetically distinct species might be classified as Fischoederius elongatus. Thus, mentions of F. elongatus from South, Southeast, and East Asia might unintentionally refer to different species. The present work describes morphology and a full mitochondrial genome sequence of one of these species. The fluke specimens were collected from 2 infected cattle in Thailand. An interesting finding was the presence of a second tRNA-Asp gene next to a partial ND1 gene. It is suggested that these duplicated sequences are the remnants of non-reciprocal recombination events caused by inverted repeats located between ND2 and ND1 mitochondrial genes.

Keywords

Acknowledgement

This work was funded by the Thailand Research Fund through a Royal Golden Jubilee Ph.D. scholarship to Pichanee Watthanasiri (PHD/0061/2556) and Thammasat University Research Unit in Parasitic Diseases. Nucleotide sequences of Fischoederius sp. 1 (Thailand) in this paper are deposited in GenBank under accession number MZ043126 and BioProject PRJNA723375.

References

  1. Sey O, Prasitirat P. Amphistomes (Trematoda, Amphistomida) of cattle and buffalo in Thailand. Miscnea zool hung 1994; 9: 11-17.
  2. Pfukenyi DM, Mukaratirwa S. Amphistome infections in domestic and wild ruminants in East and Southern Africa: A review. Onderstepoort J Vet Res 2018; 85: 1-13. https://doi.org/10.4102/ojvr.v85i1.1584
  3. Chai JY, Shin EH, Lee SH, Rim HJ. Foodborne intestinal flukes in Southeast Asia. Korean J Parasitol 2009; 47 (suppl): 69-102. https://doi.org/10.3347/kjp.2009.47.S.S69
  4. Sey O. Fischoederius Stiles et Goldberger, 1910. In Sey O ed, CRC Handbook of the Zoology of Amphistomes. Boca Raton, Florida. CRC Press. 1991; 301-307.
  5. Jones A, Bray RA, Gibson DI. Keys to the Trematoda: Volume 2. Wallingford, UK. CABI, 2005.
  6. Poirier J. Descriptions d'helminthes nouveaux du Palonia frontalis. Bull Soc philom Paris 1883; 7: 73-80.
  7. Stiles CW, Goldberger J. A study of the anatomy of Watsonius (n. g.) watsoni of man and of nineteen allied species of mammalian trematode worms of the superfamily Paramphistomoidea. Bull Hyg Lab Publ Health Mar Hosp Service US 1910; 60: 1-259. https://doi.org/10.5962/bhl.title.104724
  8. Maplestone PA. A revision of the Amphistomata of mammals. Ann Trop Med Parasitol 1923; 17: 113-213. https://doi.org/10.1080/00034983.1923.11684355
  9. Ghatani S, Shylla JA, Tandon V, Chatterjee A, Roy B. Molecular characterization of pouched amphistome parasites (Trematoda: Gastrothylacidae) using ribosomal ITS2 sequence and secondary structures. J Helminthol 2012; 86: 117-124. https://doi.org/10.1017/S0022149X11000125
  10. Ghatani S, Shylla JA, Roy B, Tandon V. Multilocus sequence evaluation for differentiating species of the trematode Family Gastrothylacidae, with a note on the utility of mitochondrial COI motifs in species identification. Gene 2014; 548: 277-284. https://doi.org/10.1016/j.gene.2014.07.046
  11. Yang X, Zhao Y, Wang L, Feng H, Tan L, Lei W, Zhao P, Hu M, Fang R. Analysis of the complete Fischoederius elongatus (Paramphistomidae, Trematoda) mitochondrial genome. Parasit Vectors 2015; 8: 279. https://doi.org/10.1186/s13071-015-0893-3
  12. Nak-On S, Chontananarth T. Rumen fluke, Fischoederius elongatus (Trematoda: Gastrothylacidae): Preliminary investigation of suitable conditions for egg hatching. Vet Parasitol 2020; 282: 109135. https://doi.org/10.1016/j.vetpar.2020.109135
  13. Chang Z, Li G, Liu J, Zhang Y, Ashby C, Liu D, Cramer CL, Huang X. Bridger: a new framework for de novo transcriptome assembly using RNA-seq data. Genome Biol 2015; 16: 30. https://doi.org/10.1186/s13059-015-0596-2
  14. Adisakwattana P, Viyanant V, Chaicumpa W, Vichasri-Grams S, Hofmann A, Korge G, Sobhon P, Grams R. Comparative molecular analysis of two asparaginyl endopeptidases and encoding genes from Fasciola gigantica. Mol Biochem Parasitol 2007; 156: 102-116. https://doi.org/10.1016/j.molbiopara.2007.07.006
  15. Bernt M, Donath A, Juhling F, Externbrink F, Florentz C, Fritzsch G, Putz J, Middendorf M, Stadler PF. MITOS: improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol 2013; 69: 313-319. https://doi.org/10.1016/j.ympev.2012.08.023
  16. Rice P, Longden I, Bleasby A. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet 2000; 16: 276-277. https://doi.org/10.1016/S0168-9525(00)02024-2
  17. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Soding J, Thompson JD, Higgins DG. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 2011; 7:539. https://doi.org/10.1038/msb.2011.75
  18. Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009; 25: 1972-1973. https://doi.org/10.1093/bioinformatics/btp348
  19. Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003; 19: 1572-1574. https://doi.org/10.1093/bioinformatics/btg180
  20. Tandon RS. Studies on "crowding effect" on Gastrothylax crumenifer and Fischoederius elongatus, the common amphistome parasites of ruminants, observed under natural conditions. Res Bull Meguro Parasit Mus 1973; 7: 12-14.
  21. Lin CT, Lin WH, Lyu YL, Whang-Peng J. Inverted repeats as genetic elements for promoting DNA inverted duplication: implications in gene amplification. Nucleic Acids Res 2001; 29: 3529-3538. https://doi.org/10.1093/nar/29.17.3529